PART I - GENERAL

1.01 DESCRIPTION

A. Scope: Work of this Section shall include all materials and installation of cast-in-place architectural concrete, including formwork, reinforcement accessories, concrete materials, concrete mix design, placement procedures, and finishes, as shown and detailed on the Drawing and specified herein.

B. Related Sections:

1. Division 3 – Cast-in-Place Concrete for structural and general cast-in-place concrete construction, including formed and unformed finishes.

1.02 DEFINITION

A. Cast-in-Place Architectural Concrete: Concrete that is exposed to view on surfaces of the completed structure or building and that requires special concrete materials, formwork, placement, or finishes to obtain specified architectural appearance.

B. Design Reference Sample: Sample designated by University's Representative in the Contract Documents that reflects acceptable surface quality and appearance of cast-in-place architectural concrete.

C. Reveal: Projection of the coarse aggregate from the matrix after exposure.

1.03 SUBMITTALS

A. Product Data: For each type of manufactured material and product indicated.

B. Design Mixes: For each concrete mix. Include alternate mix designs when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

C. Shop Drawings: Show formwork construction including form-facing joints, rustications, construction and contraction joints, form joint-sealant details, form tie location and patterns, inserts and embedments, cutouts, cleanout panels, and other items that visually affect cast-in-place architectural concrete.

D. Samples: For each of the following materials:

1. Form-facing panel
2. Form-release agent
3. Form ties
4. Form liners
5. Cement
6. Coarse-and fine-aggregate gradations

7. Chamfers and rustications

8. Curing compound

9. Coloring admixtures

E. Samples for Verification: Architectural concrete samples, cast vertically, approximately 18 x 18 x 2", of finishes, colors, and textures to match the design reference sample. Include Sample sets showing the full range of variations expected in these characteristics.

F. Material Test Reports: From a qualified testing agency indicating and interpreting test results of the following for compliance with requirements indicated, based on comprehensive testing of current materials:

1. Cementitious materials and aggregates.

2. Admixtures.

3. Curing compounds.

G. Placement Schedule: Submit concrete placement schedule before start of architectural concrete placement operations. Include location of all joints including construction joints.

1.04 QUALITY ASSURANCE

A. Installer Qualifications: An experienced cast-in-place architectural concrete contractor who has specialized in installing cast-in-place architectural concrete similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

B. Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products complying with ASTM C 94 requirements for production facilities and equipment.

1. Manufacturer must be certified according to the National Ready Mixed Concrete Association's "Certification of Ready Mixed Concrete Production Facilities."

C. University's Testing Agency Qualifications: An independent testing agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 to conduct the testing indicated, as documented according to ASTM E 548.

1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program recognized by ASTM C 1077.

D. Source Limitations for Cast-in-Place Architectural Concrete: Obtain each color, size, type, and variety of concrete material and concrete mix from one manufacturer with resources to provide cast-in-place architectural concrete of consistent quality in appearance and physical properties.

F. Sample Panels: Before casting architectural concrete, produce sample panels to demonstrate the approved range of selections made under sample Submittals. Produce a minimum of 3 sets of full-scale sample panels, cast vertically, approximately 48 x 48 x 6" (1200 x 1200 x 150 mm) minimum, to demonstrate the expected range of finish, color, and texture variations.

1. Locate panels as indicated or, if not indicated, as directed by University's Representative.

2. Demonstrate methods of curing aggregate exposure, sealers, and coatings, as applicable.

3. In presence of University's Representative, damage part of an exposed-face surface for each finish, color, and texture, and demonstrate materials and techniques proposed for repair of tie holes and surface blemishes to match adjacent undamaged surfaces.

4. Maintain sample panels during construction in an undisturbed condition as a standard for judging the completed Work.

5. Demolish and remove sample panels when directed.

PART II - PRODUCTS

2.01 FORM-FACING MATERIALS

A. General: Comply with Division 3 Section "Cast-in-Place Concrete" for formwork and other form-facing material requirements.

B. Form-Facing Panels Finishes: Steel, glass-fiber-reinforced plastic, or other approved nonabsorptive panel materials that will provide continuous, true, and smooth architectural concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.

C. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that will provide surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.

D. Pan-Type Forms: Glass-fiber-reinforced plastic or formed steel, stiffened to resist plastic concrete loads without detrimental deformation.

E. Form Liners: Units of face design, texture, arrangement, and configuration [indicated]. Furnish with manufacturer's recommended liquid-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent surface treatments of concrete.

F. Rustication Strips: Metal, rigid plastic, or dressed wood with sides beveled and back kerfed; nonstaining.
G. Chamfer Strips: Metal, rigid plastic, elastomeric rubber, or dressed wood, ¾ x ¾", minimum; nonstaining.

H. Form Joint Tape: Compressible foam tape, pressure sensitive, AAMA 810.1, minimum ¼" thick.

I. Form Joint Sealant: Elastomeric sealant complying with ASTM C 920, Type M or S, Grade NS, that adheres to form joint substrates.

J. Sealer: Penetrating, clear, polyurethane wood form sealer formulated to reduce absorption of bleed water and prevent migration from wood of set-retarding chemicals.

K. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect architectural concrete surfaces and will not impair subsequent treatments of those surfaces.

L. Surface Retarder: Chemical liquid set retarder, for application on form-facing materials, capable of temporarily delaying final hardening of newly placed concrete surface to depth of reveal specified.

M. Form Ties: Factory-fabricated, internally disconnecting ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.

 1. Furnish ties with tapered tie cone spreaders that, when removed, will leave holes not larger than ¾" in diameter on concrete surface.

 2. Furnish internally disconnecting ties that will leave no corroducible metal closer than 1-½" (38 mm), plus reveal projection of exposed aggregate, from the plane of architectural concrete surface.

 3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

2.02 REINFORCEMENT ACCESSORIES

A. General: Comply with Division 3 Section "Cast-in-Place Concrete" for steel reinforcement and other requirements for reinforcement accessories.

B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire fabric in place. Where legs of wire bar supports contact forms, use [all-plastic] [CRSI Class 1 plastic-protected] [CRSI Class 2 stainless-steel] bar supports.

2.03 CONCRETE MATERIALS

A. Portland Cement: ASTM C 150, Type [I], [gray] color, of same type, brand, and source for entire Project.

B. Normal-Weight Coarse Aggregate: ASTM C 33, from the same source for entire Project, and as follows:

C. Weathering Region and Class: [Moderate, 5M].
1. Nominal Maximum Aggregate Size: [1”]

D. Normal-Weight Fine Aggregate: [ASTM C 33], manufactured or natural sand, from the same source for entire Project.

E. Water: Potable, complying with ASTM C 94 except free of wash water from mixer washout operations.

F. Chemical Admixtures: Certified by manufacturer to contain not more than 0.1% water-soluble chloride ions by mass of cementitious material and to be compatible with other admixtures and cementitious materials. Do not use admixtures containing calcium chloride.

2. Water-Reducing Admixture: ASTM C 494, Type A.

3. High-Range, Water-Reducing Admixture: ASTM C 494, Type F.

4. Water-Reducing and Accelerating Admixture: ASTM C 494, Type E.

5. Water-Reducing and Retarding Admixture: ASTM C 494, Type D.

G. Coloring Admixture: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures, free of carbon black; color stable, nonfading, and resistant to lime and other alkalis.

1. Color: As selected by University’s Representative from manufacturer’s full range.

2.04 CURING MATERIALS

A. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

B. Clear, Waterborne, Liquid Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

2.05 REPAIR MATERIALS

A. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

B. Epoxy-Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class and grade to suit requirements, and as follows:

1. Type II, non-load bearing, for bonding freshly mixed concrete to hardened concrete.

2. Types I and II, non-load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
3. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

2.06 CONCRETE MIXES

A. Prepare design mixes for each type and strength of cast-in-place architectural concrete determined by either laboratory trial mix or field test data bases. Proportion concrete according to ACI 211.1 and ACI 301.

B. Proportion concrete mix as follows:
 1. Compressive Strength (28 Days):
 2. Maximum Water-Cementitious Materials Ratio: 0.46.
 3. Maximum Slump: 4" (100 mm).

2.07 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver cast-in-place architectural concrete according to ASTM C 94, and furnish batch ticket information.
 1. When air temperature is between 85 and 90ºF, reduce mixing and delivery time from 90 to 75 minutes; when air temperature is above 90ºF, reduce mixing and delivery time to 60 minutes.

PART III - EXECUTION

3.01 FORMWORK

A. General: Comply with Division 3 Section "Cast-in-Place Concrete" for formwork, embedded items, and shoring and reshoring.

B. In addition to ACI 303.1 limits on form-facing panel deflection, limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 1. Class A, ¼" (3 mm) as shown on drawings.

C. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast-in-place surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical. Kerf wood rustications, keyways, reglets, recesses, and the like, for easy removal.
 1. Do not use rust-stained, steel, form-facing material.

D. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

E. Chamfer exterior corners and edges of cast-in-place architectural concrete.

F. Coat contact surfaces of wood rustications and chamfer strips with sealer before placing reinforcement.
G. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

H. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

I. Seal form joints and penetrations at form ties with form joint tape or form joint sealant to prevent mortar leaks.

J. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

K. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

L. Place form liners accurately to provide finished surface texture indicated. Provide solid backing and attach securely to prevent deflection and maintain stability of liners during concreting. Prevent form liners from sagging and stretching in hot weather. Seal joints of form liners and form liner accessories to prevent mortar leaks. Coat form liner with form-release agent.

3.02 REINFORCEMENT AND INSERTS

A. General: Comply with Division 3 Section "Cast-in-Place Concrete" for fabricating and installing steel reinforcement.

B. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

3.03 REMOVING AND REUSING FORMS

A. Formwork, for sides of beams, walls, columns, and similar parts of the Work, that does not support weight of concrete may be removed after cumulatively curing at not less than 50°F (10°C) for 24 hours after placing concrete, provided concrete is hard enough to not be damaged by form-removal operations and provided curing and protection operations are maintained.

1. Schedule form removal to maintain surface appearance that matches approved [sample panels].

B. Leave formwork, for beam soffits, joists, slabs, and other structural elements, that supports weight of concrete in place until concrete has achieved [28-day design compressive strength]. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.

C. Clean and repair surfaces of forms to be reused in the Work. Do not use split, frayed, delaminated, or otherwise damaged form-facing material. Apply new form-release agent.

D. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for architectural concrete surfaces.
3.04 JOINTS

A. Construction Joints: Install construction joints true to line with faces perpendicular to surface plane of cast-in-place architectural concrete so strength and appearance of concrete are not impaired, at locations indicated or as approved by University's Representative.

1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated.

2. Use bulkhead forms with keys of plywood, wood, or expanded galvanized steel sheet, unless otherwise indicated. Embed keys at least 1-1/2" (38 mm) into concrete. Align construction joint within rustications attached to form-facing material.

3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.

4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.

5. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.

6. Use [epoxy-bonding adhesive] at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

B. Contraction Joints: Form weakened-plane contraction joints true to line with faces perpendicular to surface plane of cast-in-place architectural concrete so strength and appearance of concrete are not impaired, at locations indicated or as approved by University's Representative.

3.05 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.

B. Do not add water to concrete during delivery, at Project site, or during placement, unless approved by University's Representative.

C. Deposit concrete continuously between construction joints. Deposit concrete to avoid segregation.

D. Deposit concrete in forms in horizontal layers no deeper than 24" (600 mm) and in a manner to avoid inclined construction joints. Place each layer while preceding layer is still plastic, to avoid cold joints.

1. Consolidate placed concrete with mechanical vibrating equipment. Use equipment and procedures for consolidating concrete recommended by ACI 309R.
2. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations no farther than the visible effectiveness of the vibrator. Place vibrators to rapidly penetrate placed layer and at least 6” into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing concrete mix constituents to segregate.

E. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.

1. When air temperature has fallen to or is expected to fall below 40°F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50°F and not more than 80°F at point of placement.

2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.

3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators, unless otherwise indicated and approved in concrete mix designs.

F. Hot-Weather Placement: Place concrete according to recommendations in ACI 305R and as follows, when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90°F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.

2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.

3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.06 FINISHES, GENERAL

A. Architectural Concrete Finish: Match University's Representative's design reference sample, identified and described as indicated.

B. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces.

1. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

C. Maintain uniformity of special finishes over construction joints, unless otherwise indicated.
3.07 AS-CAST FORMED FINISHES

A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defective areas repaired and patched. Remove fins and other projections exceeding ACI 347R limits for class of surface specified.

B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defective areas. Remove fins and other projections exceeding 1/8” in height. Do not apply rubbed finish to smooth-formed finish.

C. Rubbed Finish: Apply the following to smooth-formed finished concrete:

1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.

2. Grout-Cleaned Finish: Wet concrete surfaces and apply grout of a consistency of thick paint to coat surfaces and fill small holes. Mix 1 part portland cement to 1-½ parts fine sand with a 1:1 mixture of bonding admixture and water. Add portland cement in amounts determined by trial patches so color of dry grout matches adjacent surfaces. Scrub grout into voids and remove excess grout. When grout whitens, rub surface with clean burlap and keep surface damp by fog spray for at least 36 hours.

3. Cork-Floated Finish: Wet concrete surfaces and apply a stiff grout. Mix 1 part portland cement and 1 part fine sand with a 1:1 mixture of bonding agent and water. Add portland cement in amounts determined by trial patches so color of dry grout matches adjacent surfaces. Compress grout into voids by grinding surface. In a swirling motion, finish surface with a cork float.

D. Form Liner Finish: Cast panel against form liners placed, secured, and sealed over formwork panels to produce a textured surface free of pockets, streaks, and honeycombs. Produce a surface appearance of uniform color and texture.

3.08 CONCRETE CURING

A. Protect freshly placed concrete from premature drying and excessive cold or hot temperatures according to ACI 301.

B. Begin curing immediately after removing forms from concrete. Cure by one or a combination of the following methods that will not mottle, discolor, or stain concrete:

C. Moisture Curing: Keep exposed surfaces of cast-in-place architectural concrete continuously moist for not less than seven days with the following materials:

1. Water.
2. Continuous water-fog spray.
3. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12” lap over adjacent absorptive covers.
D. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12” and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period; use cover material and waterproof tape.

E. Curing Compound: Mist concrete surfaces with water. Apply curing compound uniformly in continuous operation by power spray or roller according to manufacturer’s written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.09 FIELD QUALITY CONTROL

A. General: Comply with Division 3 Section "Cast-in-Place Concrete" for field quality-control requirements.

3.10 REPAIRS, PROTECTION, AND CLEANING

A. Repair and cure damaged finished surfaces of cast-in-place architectural concrete when approved by University’s Representative. Match repairs to color, texture, and uniformity of surrounding surfaces and to repairs on approved mockups.

1. Remove and replace cast-in-place architectural concrete that cannot be repaired and cured to University’s Representative’s approval.

B. Protect corners, edges, and surfaces of cast-in-place architectural concrete from damage; use guards and barricades.

C. Protect cast-in-place architectural concrete from staining, laitance, and contamination during remainder of construction period.

D. Clean cast-in-place architectural concrete surfaces after finish treatment to remove stains, markings, dust, and debris.

E. Wash and rinse surfaces according to concrete finish applicator’s written recommendations. Protect other Work from staining or damage due to cleaning operations.

1. Do not use cleaning materials or processes that could change the appearance of cast-in-place architectural concrete finishes.

END OF SECTION 03331