COST-EFFECTIVENESS OF ADULT HEARING SCREENING IN THE US

Ethan D. Borre, MD, PhD PGYI, Internal Medicine Massachusetts General Hospital ethan.borre@mgh.harvard.edu

UC Davis Research Seminar 10.11.23

DISCLOSURES

- Funding from the NIH (3ULI-TR002553-03S3 and F30 DC019846); Duke Margolis Center (Scholars Award to ED Borre); Duke Bass Connections
- No conflicts of interest

PRESENTATION OBJECTIVES

- I. Decision modeling is a quantitative method that can inform health policy
- 2. Hearing loss is prevalent, undertreated, and significantly impacts quality of life, physical, and mental health
- 3. Yearly hearing screening of persons 55+ is likely a costeffective intervention in the US

AGENDA:

- I. CEA and Decision Analysis
- 2. Hearing loss in the United States
 - 3. DeciBHAL development
 - 4. Adult hearing screening CEA

AGENDA:

I. CEA and Decision Analysis

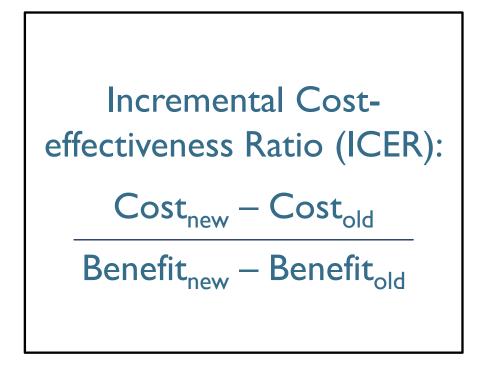
Hearing loss in the United States DeciBHAL development

4. Adult hearing screening CEA

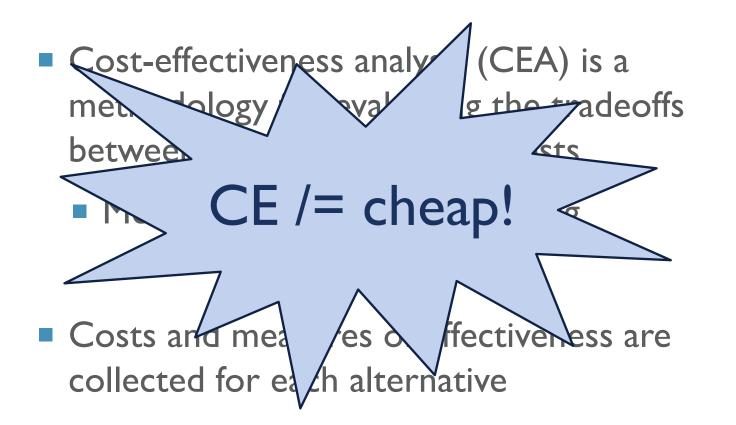
DECISION ANALYSIS

Decision analysis is a quantitative, probabilistic method for modeling problems under situations of uncertainty

Goal: clarify dynamics and trade-offs involved in selecting one strategy from a set of alternatives



Formal decision analysis is most helpful for important, unique, complex, non-urgent, and high-stakes decisions


COST-EFFECTIVENESS ANALYSIS

- Cost-effectiveness analysis (CEA) is a methodology for evaluating the tradeoffs between health benefits and costs
 - Meant to aid in decision making

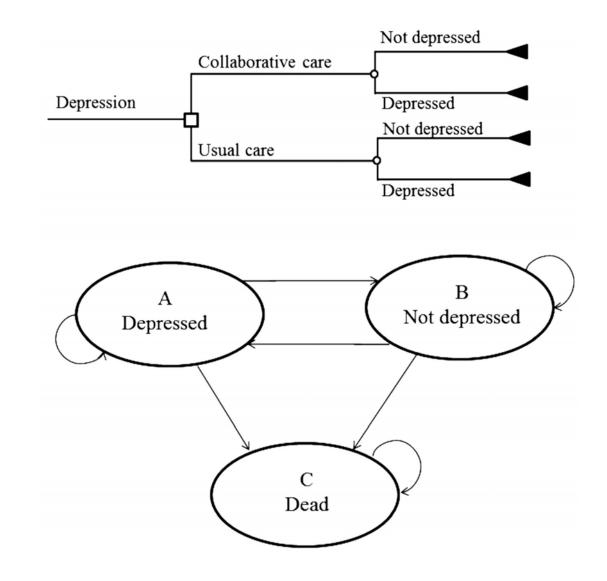
 Costs and measures of effectiveness are collected for each alternative

COST-EFFECTIVENESS ANALYSIS

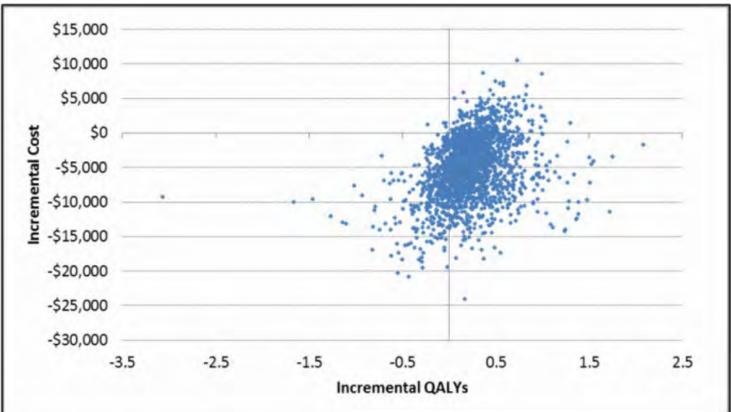
Incremental Cost- effectiveness Ratio (ICER):
Cost _{new} – Cost _{old}
Benefit _{new} – Benefit _{old}

Schematic representation of all the clinically important outcomes of a decision Computes average outcomes (costs, qualityadjusted life-years, etc.) for alternatives

Necessarily a simplification of reality: requires assumptions


DECISION MODELS

Require parameterization from data sources (published or unpublished)


TYPES OF DECISION MODELS

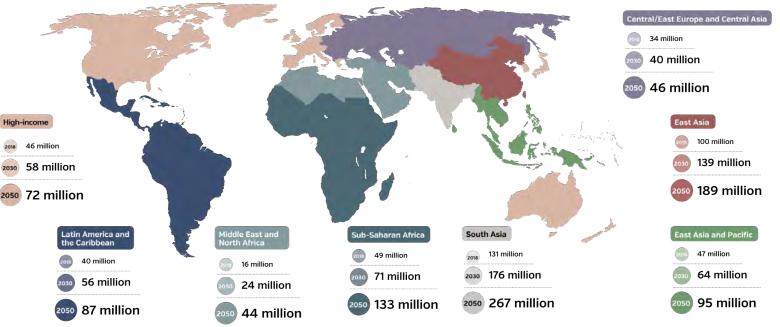
- Tree Diagram
 - Most simple, underlies many other models
- Markov Cohort Model
 - Transition between health states, incorporates time
- Microsimulation (Monte Carlo) Model
 - Similar to Markov, but each patient is simulated individually
- Discrete Event Simulation
 - More flexible use of time

SENSITIVITY ANALYSIS

- Critical to a decision analysis
- Deterministic: change model input parameters to pre-determined values
 - One-way (change cost to low/high values)
 - Multi-way (change cost to high and efficacy to low, "worst case")
- Probabilistic: assign distributions to model inputs; each "run" pulls from distributions independently

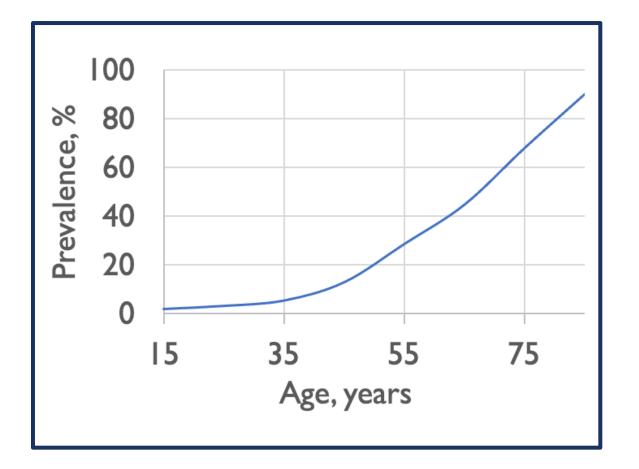
I. CEA and Decision Analysis

2. Introduction


3. DeciBHAL development

4. Adult hearing screening CEA

BACKGROUND


- Hearing loss is the 4th leading cause of years lived with disability worldwide¹
- Significant barrier to human communication and fulfillment
- Associated with increased falls, hospitalization and dementia risk¹
- Economic burden
 \$700B/year²

Based on Global Burden of Disease regions

*The current projections are based on the assumption that age-, gender- and region-specific prevalence of disabling hearing loss does not vary over time

HEARING LOSS IN THE US

- I/3 of US adults over the age of 60 have hearing loss
- 80% of US adults with hearing loss do not receive beneficial treatment
- Improves quality of life utility by 10-15%
- RR of incidence dementia 1.2-1.4
- Recent RCT showed HAs slowed cognitive decline in those most at risk

AGENDA:

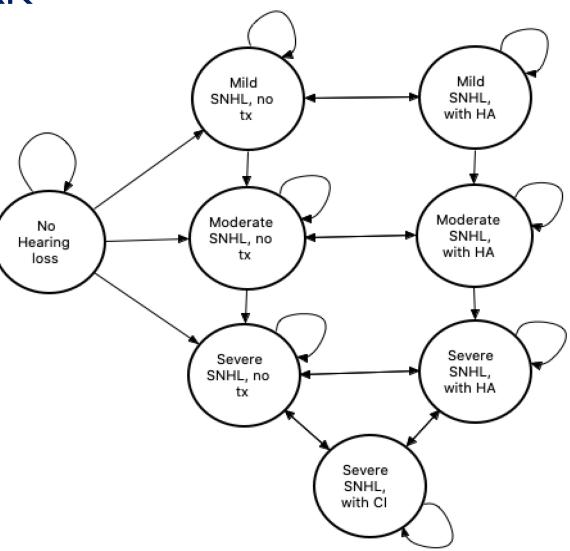
CEA and Decision Analysis Hearing loss in the United States DeciBHAL development Adult hearing screening CEA

SYSTEMATIC REVIEW OF MODELS

- Large body of literature with many highquality studies identified
- Gaps remain in evaluation of hearing health care interventions in LMIC, across the lifespan and etiologies
- Uncertainty around utility values and how to best incorporate indirect economic effects
- Next steps for Commission to synthesize high quality modeling frameworks to assess optimal global scale-up strategies

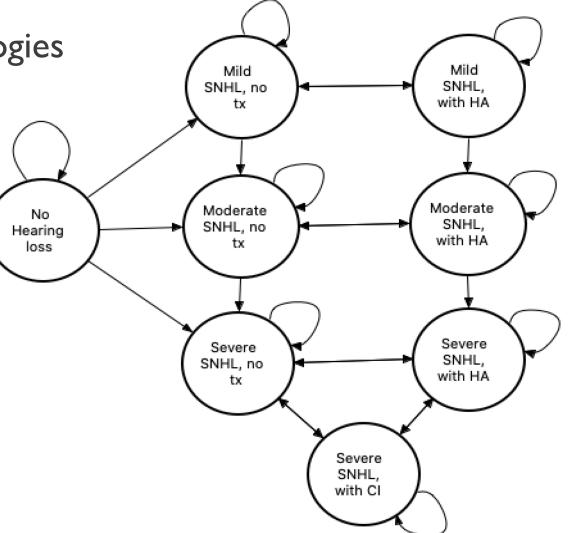
OBJECTIVE

Development and validation of DeciBHAL-US: A novel microsimulation model of hearing loss across the lifespan in the United States


Ethan D. Borre,^{a,b} Evan R. Myers,^c Judy R. Dubno,^d Gerard M. O'Donoghue,^e Mohamed M. Diab,^f Susan D. Emmett,^{f,g} James E. Saunders,^h Carolina Der,ⁱ Catherine M. McMahon,^j Danah Younis,^b Howard W. Francis,^g Debara L. Tucci,^k Blake S. Wilson,^{f,g,l,m} Osondu Ogbuoji,^{b,f,n} and Gillian D. Sanders Schmidler^{a,b,o}*

EClinicalMedicine 2022;44: 101268 Published online xxx https://doi.org/10.1016/j. eclinm.2021.101268

To develop and validate a decision modeling framework of hearing loss natural history, prevention, diagnosis, and treatment throughout the lifespan in the United States.


DECISION MODELING FRAMEWORK

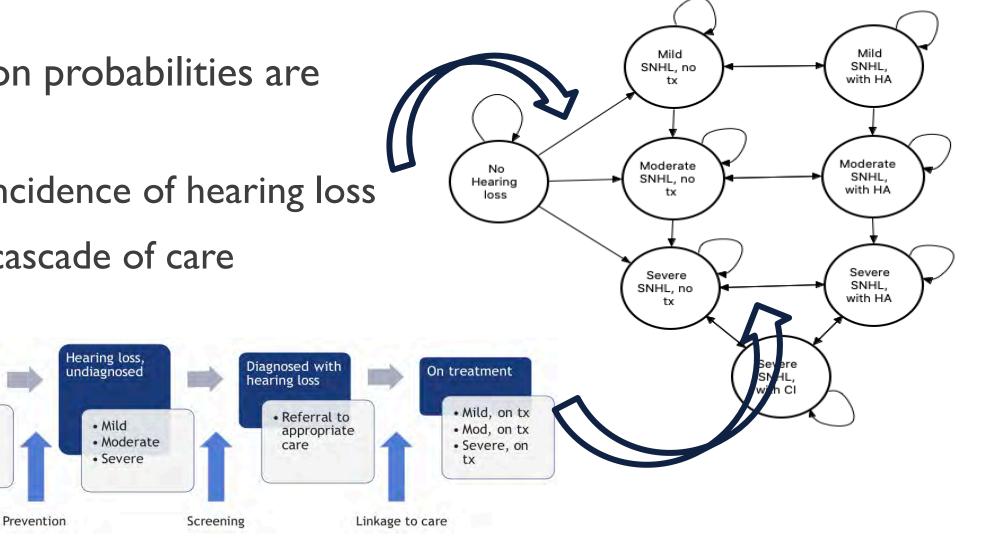
- Lancet Commission informed and reviewed model structure
- Markov microsimulation model health states:
 - Presence of hearing loss
 - Type of hearing loss (SNHL vs. CHL)
 - Treatment modality (or none)
 - Pre/post-lingual loss
- Patient age and hearing level is tracked

DECISION MODELING FRAMEWORK, SNHL

- Hearing loss is a symptom of many etiologies
 - Sensorineural hearing loss (SNHL)
 - Conductive hearing loss (CHL)
- SNHL: nerve-related hearing loss
- Simulated patients experience yearly probabilities of
 - Acquiring SNHL
 - Worsening of SNHL severity
 - Going on or off treatment (HA or CI)

DECIBHAL OVERVIEW

- Yearly transition probabilities are based on
 - age-specific incidence of hearing loss
 - hearing loss cascade of care


No hearing loss

Prenatal

Perinatal

· Child

• Adult

MODEL INPUTS, I

- Incidence of bilateral SNHL derived from published NHANES prevalence data¹
 - Proportion CHL
 - M/F risk ratios

 After age 35, SNHL decline occurs at mean 1.05 dB/year (SD=0.4)²

Variable Valu		lue
Bilateral SNHLprobability, yearly, %	Males	Females
Age 0y	0.100	0.100
Ages I-15y	0.004	0.004
Ages 16-25y	0.024	0.023
Ages 26-35y	0.220	0.216
Ages 36-45y	0.762	0.057
Ages 46-55y	1.216	0.360
Ages 56-65y	2.334	1.251
Ages 66-75y	5.385	3.827
Ages 76+y	10.422	9.168

MODEL INPUTS, 2

Yearly probability of HA uptake derived from mean time to first HA (9 years)¹

 Yearly probability of HA discontinuation 13-4% varying with time period of use^{2,3}

Variable	Value	
Yearly probability of HA uptake, %*	PTA < 40dB	PTA ≥ 40 dB
Age 0y	75.95	75.95
Ages I-5y	18.94	18.94
Ages 19-55y	0.54	2.35
Age 65y	0.5 I	4.60
Age 75y	0.60	8.14
Age 85y	0.71	7.20

INTERNAL AND EXTERNAL VALIDATION

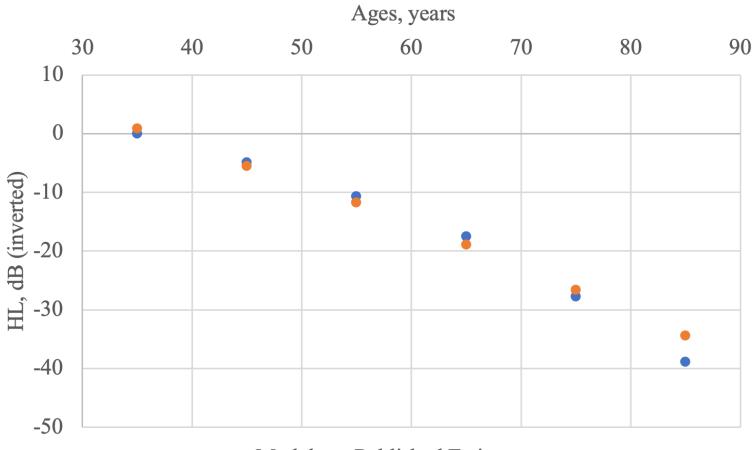
- Followed the AdVISHE framework¹
- Internal validation
 - Model code review, extreme value testing, patient trace files
- External validation
 - Compared model-projected results to published estimates
 - Considered coefficient of variance of the root mean square error (CV-RMSE) \leq 15% adequate model fit

PREVALENCE OF SNHL

- We compared model projected estimates at each decile to adjusted NHANES estimates¹
- CV-RMSE= 4.9% for males

	Bilateral SNHL Prevalence, Males			
Age	Model Outcome, %	NHANES, % (95% CI*)		
15	0.13	0.16 (0.07-0.28)		
25	0.38	0.39 (0.0-0.97)		
35	2.4	2.5 (0.2-3.1)		
45	9.9	9.7 (6.4-13.6)		
55	20.0	20.3 (15.1-25.9)		
65	36.7	37.2 (31.2-43.9)		
75	64.4	66.5 (60.5-73.7)		
85	89.7	86.4 (83.7-90.9)		

PREVALENCE OF SNHL

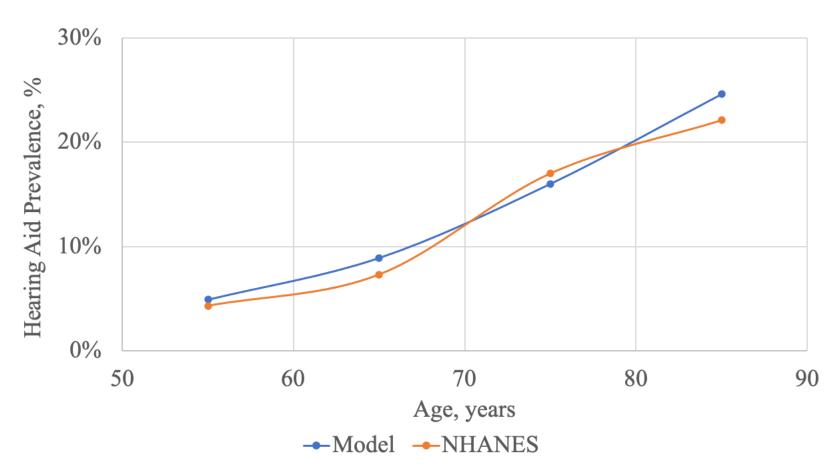

- We compared model projected estimates at each decile to adjusted NHANES estimates¹
- CV-RMSE= 4.9% for males
- CV-RMSE = 5.7% for females

	Bilateral SNHL Prevalence, Males			HLPrevalence, males
Age	Model Outcome, %	NHANES, % (95% Cl*)	Model Outcome, %	NHANES, % (95% CI*)
15	0.13	0.16 (0.07-0.28)	0.08	0.16 (0.07-0.28)
25	0.38	0.39 (0.0-0.97)	0.31	0.39 (0.0-0.97)
35	2.4	2.5 (0.2-3.1)	2.4	2.5 (0.2-3.1)
45	9.9	9.7 (6.4-13.6)	3.0	3.0 (2.0-4.2)
55	20.0	20.3 (15.1-25.9)	6.6	6.3 (4.7-8.1)
65	36.7	37.2 (31.2-43.9)	17.5	16.9 (14.2-20.0)
75	64.4	66.5 (60.5-73.7)	45.6	43.7 (39.8-48.5)
85	89.7	86.4 (83.7-90.9)	79.4	77.0 (74.6-81.0)

PROGRESSION OF SNHL

 Model Projected (blue) and Baltimore Longitudinal Study on Aging (orange) population mean dB hearing level¹

CV-RMSE = 11.3%



• Model • Published Estimate

HLTREATMENT

- Model Projected (blue) and published NHANES (orange) hearing aid prevalence¹
- Included a calibration factor
- CV-RMSE = 10.3%

Yearly cochlear implants in adults matched to estimates (n=13,000)²

CONCLUSIONS

- Adequate fit to external data
- Lifespan approach to identify optimal points of intervention
- Included both SNHL and CHL
- Simulated cascade, with treatment uptake and discontinuation

Limitations:

 Simplifying assumptions, data limitations, excluded age-period-cohort effects

AGENDA:

I. CEA and Decision Analysis

2. Hearing loss in the United States

3. DeciBHAL development

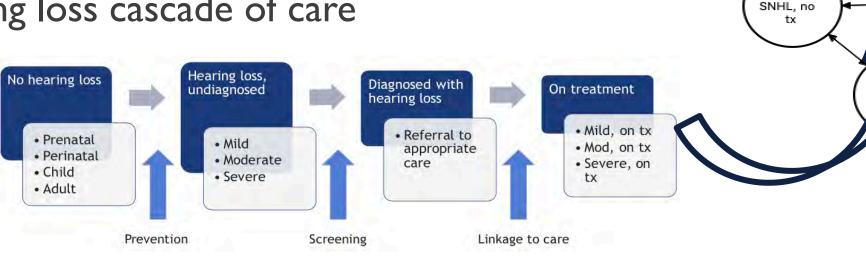
4. Adult hearing screening CEA

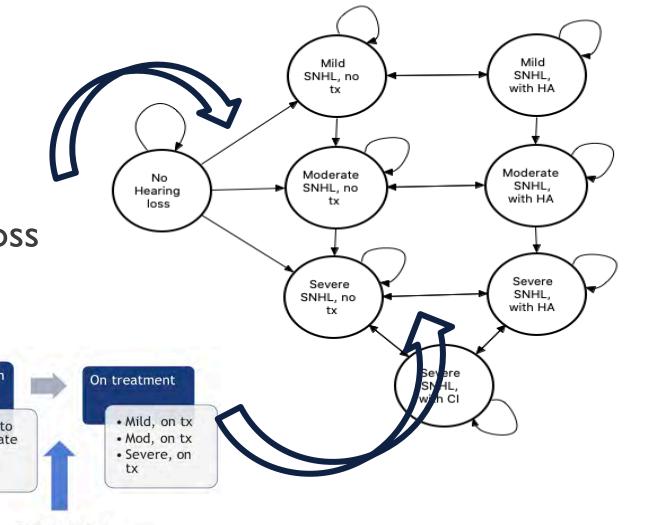
OBJECTIVE

Model-Projected Cost-Effectiveness of Adult Hearing Screening in the USA

Ethan D. Borre, PhD^{1,2}, Judy R. Dubno, PhD³, Evan R. Myers, MD, MPH⁴, Susan D. Emmett, MD, MPH^{5,6}, Juliessa M. Pavon, MD⁷, Howard W. Francis, MD, MBA⁵, Osondu Ogbuoji, MBBS, MPH, ScD^{5,8}, and Gillian D. Sanders Schmidler, PhD^{1,2,9}

To estimate the long-term clinical and economic effects of different adult hearing screening paradigms in the US.


ANALYTIC OVERVIEW


- Population: 40+yo adult primary care pts in the US
- Comparators:
 - "Current detection" current rate of symptomatic and asymptomatic presentation to hearing health care
 - Alternative screening strategies
- Perspective: Healthcare system
- Time Horizon: Lifetime
- WTP of \$100,000/QALY

Screening strategies		
Screening characteristic	Strategy	
Starting age	45, 55, 65, 75 years	
Frequency	Every I or 5 years	

DECIBHAL OVERVIEW, REMINDER

- We used DeciBHAL-US
- Yearly transition probabilities are based on
 - age-specific incidence of hearing loss
 - hearing loss cascade of care

INPUTS: HA UPTAKE

Severity- and age-stratified HA uptake probabilities

Age, years	Mild HL, yearly uptake	Moderate+ HL, yearly uptake	
<65	0.5%	2.3%	
65-74	0.5%	4.6%	
75-84	0.6%	8.1%	
85+	0.7%	7.2%	

INPUTS: HA UPTAKE

- Severity- and age-stratified HA uptake probabilities
- Together with discontinuation rates (4-13%/year) calibrated to attain NHANES-estimated HA prevalence (Chien 2012)

Age, years	Mild HL, yearly uptake	Moderate+ HL, yearly uptake	HA prevalence (Current Detection)
<65	0.5%	2.3%	4.9%
65-74	0.5%	4.6%	8.9%
75-84	0.6%	8.1%	16.0%
85+	0.7%	7.2%	24.6%

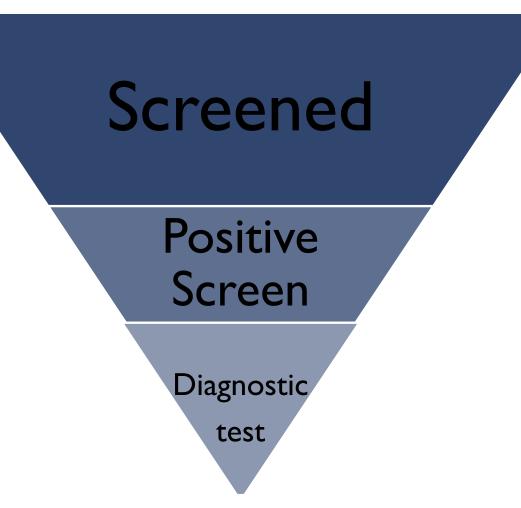
INPUTS: HA UPTAKE

- Severity- and age-stratified HA uptake probabilities
- Together with discontinuation rates (4-13%/year) calibrated to attain NHANES-estimated HA prevalence (Chien 2012)
- Screening effectiveness incorporated as a multiplier on these probabilities

Age, years	Mild HL, yearly uptake	Moderate+ HL, yearly uptake	HA prevalence (Current Detection)
<65	0.5%	2.3%	4.9%
65-74	0.5%	4.6%	8.9%
75-84	0.6%	8.1%	16.0%
85+	0.7%	7.2%	24.6%

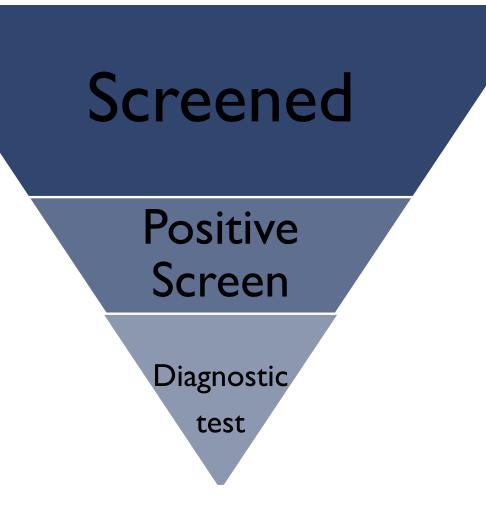
INPUTS: SCREENING EFFECTIVENESS

- Combined risk ratios from 2 studies (I RCT, I obs)
 - RR=1.62 for HA uptake^{1,2}
- Incorporated as a multiplier on base-line low rates of HA uptake
 - No impact on HA discontinuation (13-4%/year)^{3,4}


INPUTS: HEARING AID EFFECTIVENESS

Study Mean [95% CI] Davis, 2007 0.075 [0.038, 0.112] 0.120 [0.078, 0.162] Grutters, 2007 Kaur, Group 1, 2020 0.122 [0.098, 0.147] Kaur, Group 2, 2020 0.106 [0.073, 0.140] **RE Model** 0.108 [0.074, 0.141] 0.100 0.000 0.050 0.150 0.200 Mean

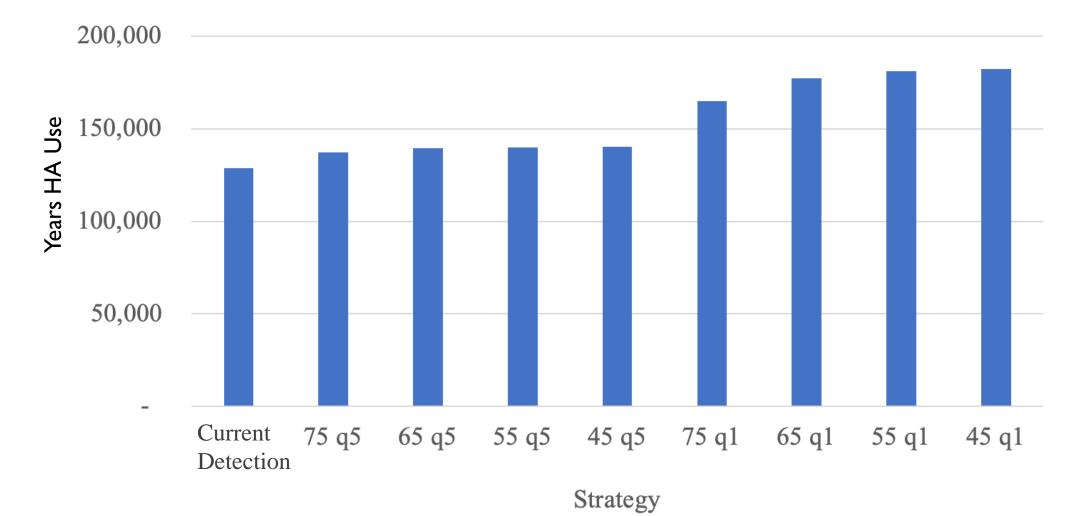
- Basecase efficacy of hearing aids used is 0.11, Cls is 0.17
- Sensitivity analysis using GBD/WHO assumptions


INPUTS: COST OF SCREEN

- People without HL: \$33
 - Cost of screening test (\$2.06)¹
 - HHIE/Single Q FP rate (24%)² * Proportion that seek test (43.3%)³ * Audiology test cost (\$295)⁴

INPUTS: COST OF SCREEN

- People without HL: \$33
 - Cost of screening test (\$2.06)¹
 - HHIE/Single Q FP rate (24%)² * Proportion that seek test (43.3%)³ * Audiology test cost (\$295)⁴
- People with HL, but no HA: \$120
 - Cost of screening test (\$2.06)^I
 - Best HHIE/Single Q Sensitivity (80%)² * Probability Screened and no HA uptake (51%)³ * Audiology test cost (\$295)⁴



INPUTS: COSTS OF HLTREATMENT

Component	Cost, 2020 USD	Reference
Hearing Aid		
One-time uptake ¹	\$4,260	NAM, Hojjat 2017, Abrams 2002
Recurring ²	\$910	
Cochlear Implant ³		
One-time implantation cost	\$54,380	Hojjat 2017, Semenov 2013, Wyatt
Recurring costs years 2-6	\$1,400	10jjat 2017, Semenov 2013, vyatt 1996
Recurring costs years 7+	\$1,260	

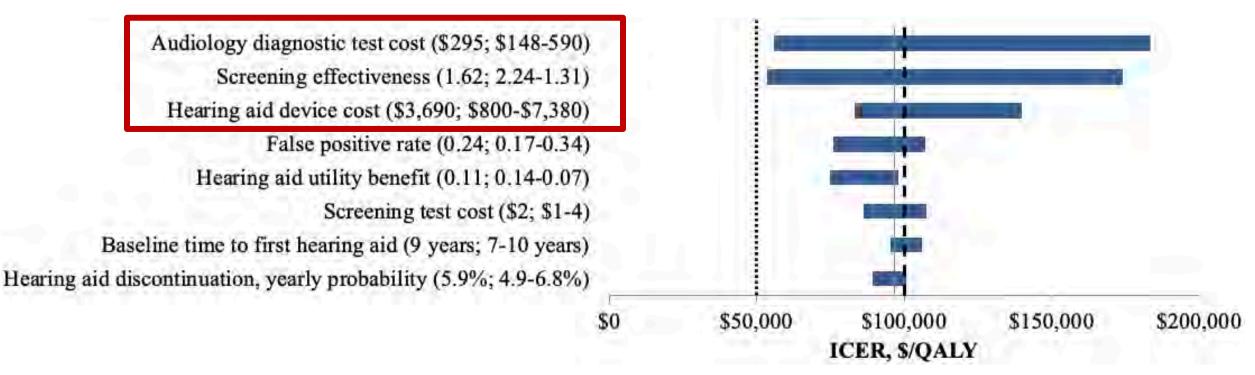
¹Assuming 84% bilateral, including lower VA pricing ²Assuming replacement every 4 years ³Unilateral CI

RESULTS: PERSON-TIME HA USE

41

RESULTS: EFFECTIVENESS AND COSTS

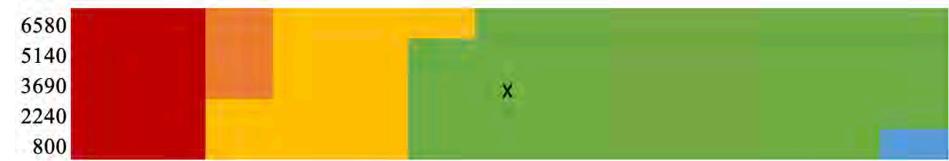
Per-person	Lifetime QALYs (undiscounted)	
Current Detection	32.107	
75 q5	32.117	
75 q l	32.149	
65 q l	32.168	
55 q l	32.175	
45 q l	32.177	


RESULTS: EFFECTIVENESS AND COSTS

Per-person	Lifetime QALYs (undiscounted)	Lifetime costs (undiscounted, 2020 USD)	
Current Detection	32.107	3,300	
75 q5	32.117	3,630	
75 q l	32.149	4,780	
65 q l	32.168	5,570	
55 q l	32.175	6,100	
45 q l	32.177	6,490	

RESULTS: EFFECTIVENESS AND COSTS

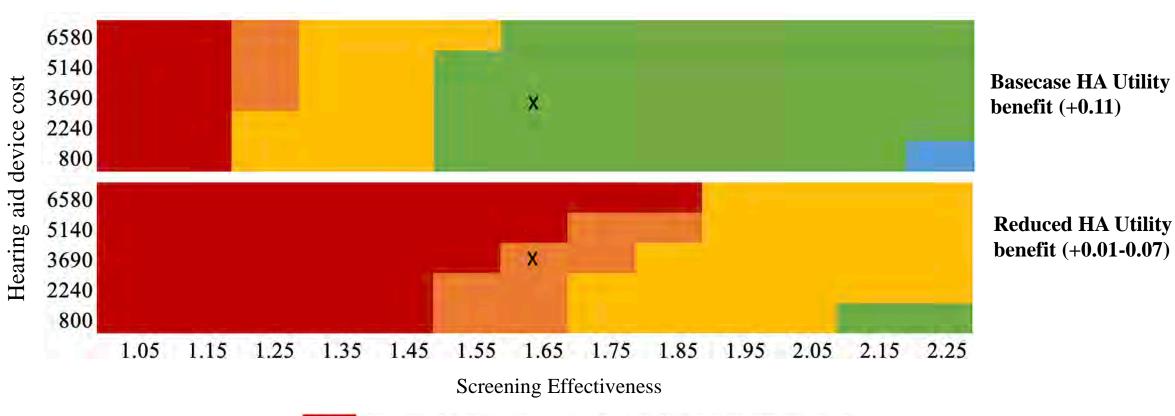
		Lifetime costs	ICER
	Lifetime QALYs	(undiscounted,	(discounted,
Per-person	(undiscounted)	2020 USD)	\$/QALY)
Current Detection	32.107	3,300	-
75 q5	32.117	3,630	37,500
75 q l	32.149	4,780	39,100
65 q l	32.168	5,570	48,900
55 q l	32.175	6,100	96,900
45 q l	32.177	6,490	234,600


ONE-WAY SENSITIVITY ANALYSIS

Tornado showing ICER of yearly screening starting at age 55 years

Audiology diagnostic test cost, screening effectiveness, and hearing aid device cost are the most influential parameters

THREE-WAY SENSITIVITY ANALYSIS


Basecase HA Utility benefit (+0.11)

1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15 2.25

Screening Effectiveness

All simulated strategies with ICERs >\$100,000/QALY 75q1 with ICER <\$100,000/QALY 65q1 with ICER <\$100,00/QALY 55q1 with ICER \$50,000-100,000/QALY 55q1 with ICER <\$50,000/QALY

THREE-WAY SENSITIVITY ANALYSIS

All simulated strategies with ICERs >\$100,000/QALY 75q1 with ICER <\$100,000/QALY 65q1 with ICER <\$100,00/QALY 55q1 with ICER \$50,000-100,000/QALY 55q1 with ICER <\$50,000/QALY

CONCLUSIONS

- Yearly screening beginning at age 55 years increases per-person undiscounted lifetime QALYs by 0.07
 - And is likely cost-effective at \$96,900/QALY
- Variations in screening effectiveness and HA device cost (OTC HAs) influence optimal age at initiation (55-75 years)
- Limitations: model simplifications, effectiveness parameter uncertainty, effect of repeated HL screenings, no societal costs included

VALUE OF

JAMA Health Forum

Original Investigation

Estimated Monetary Value of Future Research Clarifying Uncertainties Around the Optimal Adult Hearing Screening Schedule

Ethan D. Borre, PhD; Evan R. Myers, MD, MPH; Judy R. Dubno, PhD; Susan D. Emmett, MD, MPH; Juliessa M. Pavon, MD; Howard W. Francis, MD, MBA; Osondu Ogbuoji, MBBS, MPH, ScD; Gillian D. Sanders Schmidler, PhD

- High level of decision uncertainty around age of screen initiation
- Monetary value of future research estimated at \$9.6 billion
- Future research on screening effectiveness at \$2.6 billion
 - Recent large trial (ACHIEVE: 850 patients over 3 years) cost \$16.5 million
 - Entire NIDCD budget in 2020 was \$446 million

POLICY IMPLICATIONS

- Yearly hearing screening beginning at age 55 is likely costeffective
 - Current USPSTF guidelines leave this up to patient/clinician
- Optimal age of initiation is uncertain
- Research investments to clarify hearing screening effectiveness are likely warranted

FUTURE DIRECTIONS

- HL treatment as dementia prevention
- Extension of DeciBHAL to LMIC
- Online tool for decisionmakers
- Ongoing review to incorporate societal perspective
- Inclusion of spillover health benefits (falls, healthcare spending)
- Consideration of HHC disparities

ACKNOWLEDGEMENTS

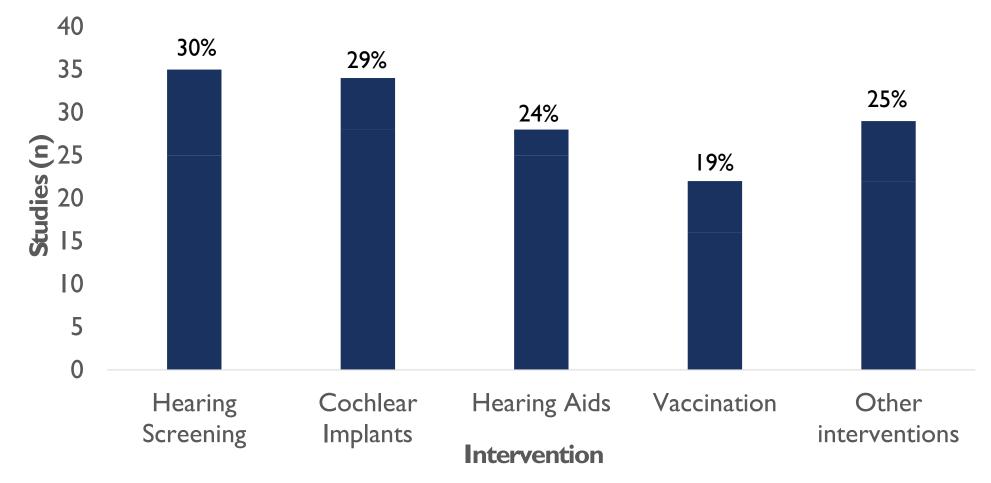
- Gillian Sanders Schmidler, Howard Francis, Susan Emmett, Osondu Ogbuoji
- Bass Connections Team
- Kamaria Kaalund, Mohamed Diab, Siddharth Dixit, Minahil Shahid
- Austin Ayer, Gloria Zhang
- Evan Myers, Shelby Reed, Deb Tucci, Judy Dubno, Corinna Sorensen, Blake Wilson, Juliessa Pavon

PRESENTATION OBJECTIVES

- I. Decision modeling is a quantitative method that can inform health policy
- 2. Hearing loss is prevalent, undertreated, and significantly impacts quality of life, physical, and mental health
- 3. Yearly hearing screening of persons 55+ is likely a costeffective intervention in the US

COST-EFFECTIVENESS OF ADULT HEARING SCREENING IN THE US

Ethan D. Borre, MD, PhD PGYI, Internal Medicine Massachusetts General Hospital ethan.borre@mgh.harvard.edu


UC Davis Research Seminar 10.11.23

STUDY CHARACTERISTICS

Interventions Studied, n=117 studies

Multiple interventions explored in each study, will not sum to 100%

MODELING CHARACTERISTICS

- 62% used tree diagrams*
 35% used Markov
- models^*

7% other

Sensitivity Analyses included

One-way Deterministic	83%
Probabilistic	42%
Multi-way Deterministic	26%
None	7%

*Some models used a combination tree and Markov model

UTILITY AND INDIRECT ECONOMIC EFFECTS

- Utility values used for hearing health states varied widely between studies
 - 28% derived study-specific utility values
- 35% of studies included indirect economic effects

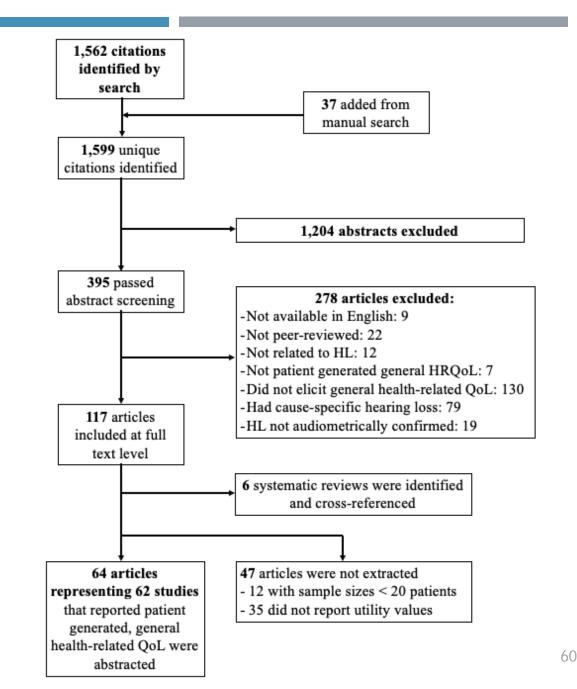
18% 18% 31% Employment Education Transportation Caregiver/Family Other

Types of Indirect Economic Effects Included

Introduction

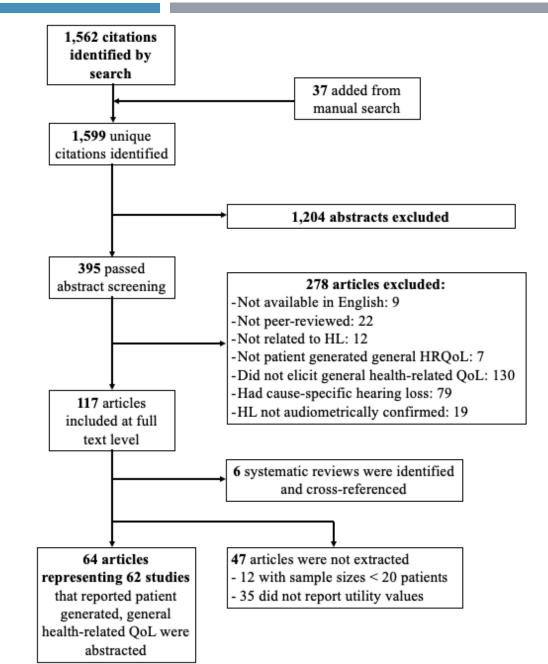
2. Previous decision models of hearing loss

Detour: Utility impact of hearing loss 4 A and its treatment

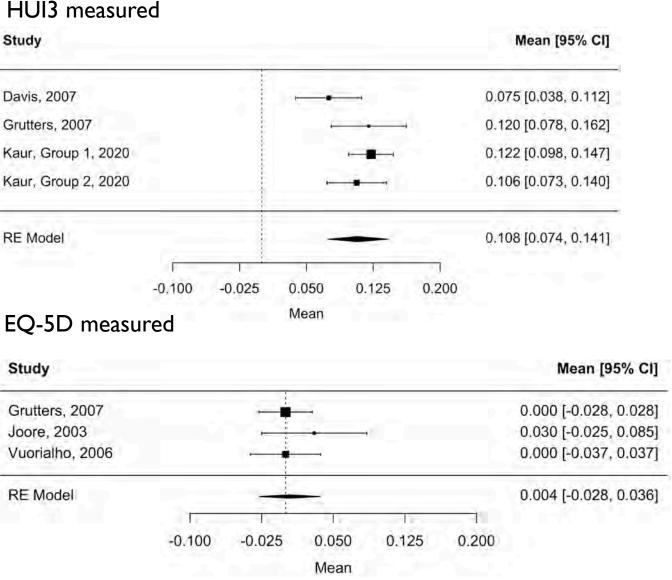

5. Value of future research

OBJECTIVE

To identify and synthesize current estimates of HRQoL utility values for untreated and treated HL and thereby to inform economic analyses and hearing healthcare clinical and policy decision-making.


METHODS

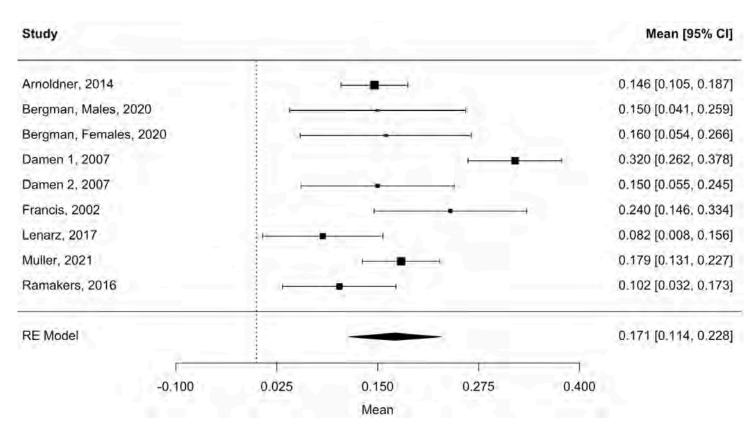
- Searched MEDLINE, EMBASE, Scopus, CINAHL EBSCO, and Global Health EBSCO on I February 2021
- Inclusion criteria:
 - Treated or untreated hearing loss
 - Patient-reported health-state utility values
- Meta-analysis of utility values if ≥3 estimates with identical utility elicitation measures and health states


RESULTS

- 61% of studies used pre/post design
- 65% evaluated unilateral cochlear implantation
- 71% administered the HUI3
- 84% conducted in Europe/North America
- Most studies found a benefit of hearing loss treatment, except if EQ-5D was used

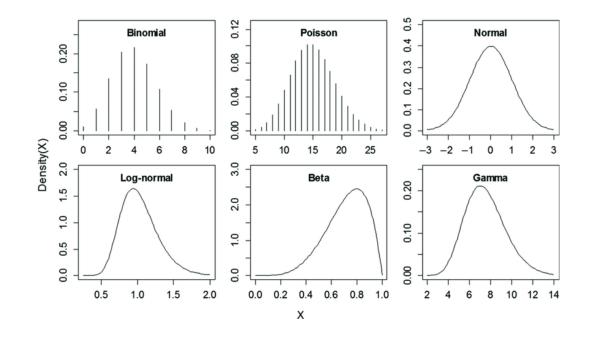
META-ANALYSIS RESULTS, I

- Hearing aids improved adult HUI3-estimated utility by 0.11 [95% CI: 0.07-0.14]
- No significant effect on utility was seen when the EQ-5D was used



HUI3 measured

META-ANALYSIS RESULTS, 2


- Cochlear implants improved adult utility by 0.17 [95% CI: 0.11-0.23] at ≥1 year
- Pediatric VAS-estimated utility, mean=0.12, had CI that included no effect [-0.02-0.25]

 Unable to synthesize estimates of untreated HL, pediatric hearing aids

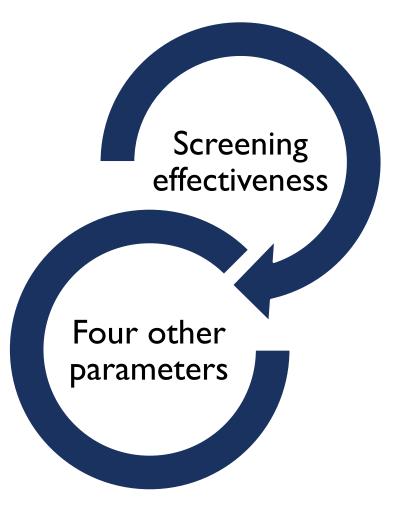
CONCLUSIONS

- Few analyses in LMIC
- EQ-5D and SF-6D elicitation measures are insensitive to changes in hearing
 - HUI3, HUI2, VAS, and TTO methods can detect hearing improvements
- Current assumptions about treatment benefits, like that of WHO and GBD, 0.01-0.07, may underestimate true utility benefits

- Assigned distributions to 5 uncertain parameters
 - Utility benefit of hearing aids
 - Screening effectiveness
 - Screening test false positive rate
 - Audiology diagnostic test cost
 - Hearing aid device cost
- Ran 1,000 iterations of the simulation, drawing from each distribution
- Created cost-effectiveness acceptability curve (CEAC)

VOI METHODS, EVPI

- EVPI: value of reducing all uncertainty of every input
 - Calculated net marginal benefit of each strategy for every PUA iteration


- NMB= (QALYxWTP) Costs
- Optimal strategy= one with highest positive NMB
- EVPI = summed differences between maximum NMB of each PUA iteration and the expected average NMB across all simulations

 $EVPI = E_{\theta}[\max NB_t(\theta)] - \max E_{\theta}[NB_t(\theta)]$

400	1,000		
	1,000	950	50
-100	600	500	100
2,300	2,400	2,500	0
3,600	3,900	3,800	100
•	•	•	
·	·		·
1,625	1,900	1,940	EVPI 300
	-100 2,300 3,600	-100 600 2,300 2,400 3,600 3,900 	-100 600 500 2,300 2,400 2,500 3,600 3,900 3,800

VOI METHODS, EVPPI

- EVPPI: value of reducing all uncertainty of one input
- Performed EVPPI for screening effectiveness parameter
 - Determine upper bound of a new trial's value
- Outer loop: DeciBHAL drew from screening effectiveness distribution
- Inner loop: DeciBHAL drew from the four other distributions simultaneously

POPULATION EVPI AND EVPPI

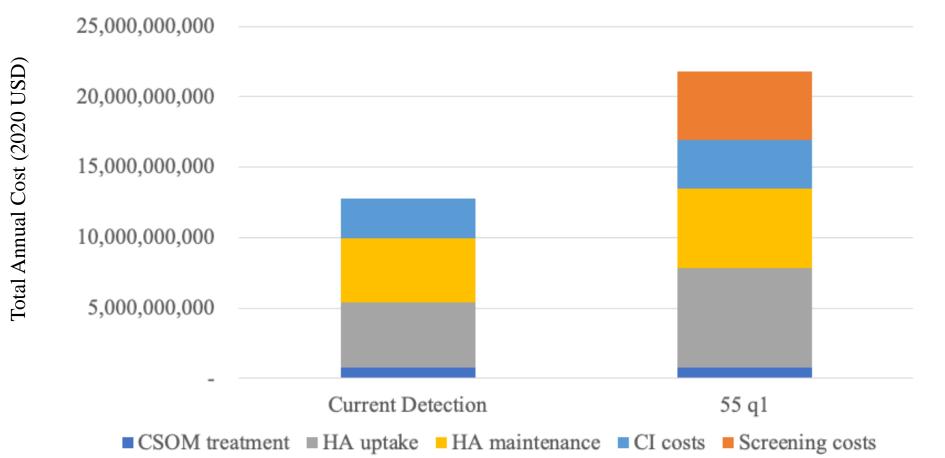
- Calculated population EVPI and EVPPI using the per-person estimates
- Multiply per-person values by population affected
 - Prevalent: 40+ years in US who who currently have hearing loss
 - Incident: persons expected to acquire HL over the next 5 years
 - Discount the incident population

RESULTS: EXPECTED VALUE OF PERFECT INFORMATION

Willingness to Pay (\$/QALY)	Expected value of perfect information	Population expected value of perfect information (2020 USD, billions)
\$50,000	\$234	\$12.641
\$100,000	\$176	\$9.555
\$150,000	\$152	\$8.244
\$200,000	\$167	\$9.020

This is the expected monetary value of reducing all uncertainty across the 5 parameters

RESULTS: EXPECTED VALUE OF PARTIAL PERFECT INFORMATION

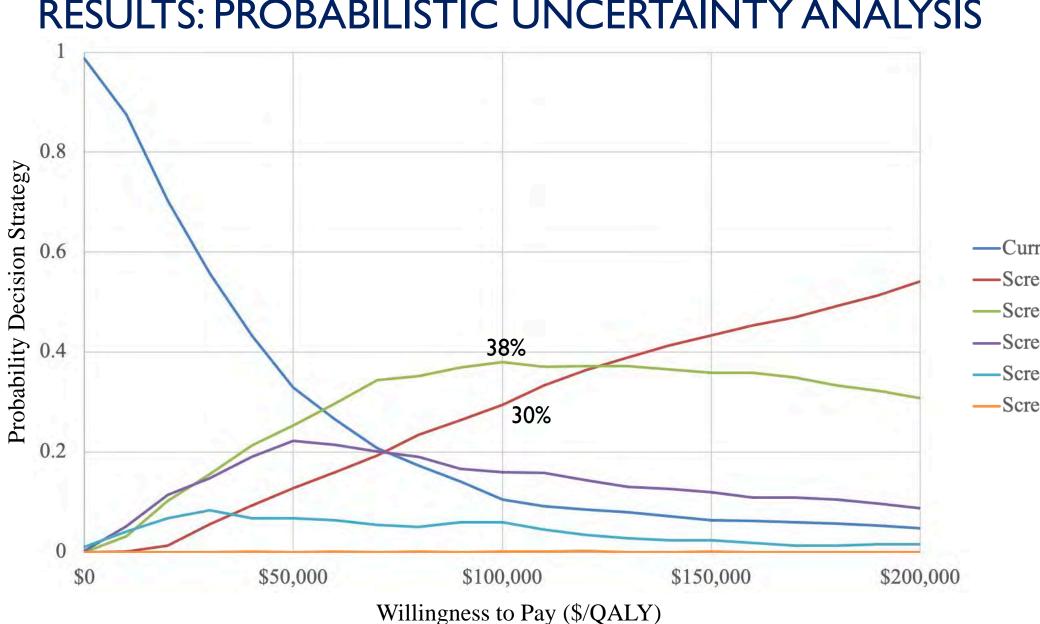

Willingness to Pay (\$/QALY)	Expected value of partial perfect information for screening effectiveness	Population expected value of partial perfect information for screening effectiveness (2020 USD, billions)	
\$50,000	\$23	\$1.270	
\$100,000	\$45	\$2.434	
\$150,000	\$38	\$2.038	
\$200,000	\$58	\$3.148	

This is the expected monetary value of reducing all uncertainty for the effectiveness of screening

RESULTS: AGE AT FIRST HA

	40-49 years	50-59 years	60-69 years	70-79 years	80-89 years	90-99 years
No						
Screen	0.55%	2.63%	12.23%	34.21%	38.87%	11.50%
70 q10	0.54%	2.56%	11.92%	33.68%	39.05%	12.15%
60 q I 0	0.54%	2.56%	12.09%	33.71%	38.97%	12.13%
70 q5	0.53%	2.50%	11.61%	35.09%	39.03%	11.26%
50 q10	0.54%	2.74%	12.08%	33.59%	38.93%	12.12%
40 q I 0	0.54%	2.74%	12.08%	33.59%	38.93%	12.12%
60 q5	0.52%	2.49%	12.10%	34.85%	38.82%	11.22%
50 q5	0.52%	2.79%	11.95%	34.73%	38.79%	11.21%
40 q5	0.61%	2.75%	11.91%	34.73%	38.79%	11.21%

BUDGET IMPACT ANALYSIS



Yearly average undiscounted costs for prevalent US population over 5 years

Total yearly budget impact at \$9B, majority (~\$5B) is screening costs

DISTRIBUTIONS FOR PUA

Variable	Value	Distribution
Utility benefit of hearing aids	+0.11	Beta; alpha=33.61, beta=285.93
Utility benefit of cochlear implants	+0.16	-
Screen Effectiveness, multiplier on HA uptake	1.62	Normal; mean=1.6, SD=0.4
Screening test false positive rate	14%	Beta, alpha=93.54, beta=29.70
Economic input parameters	Value (2020 USD)	Distribution
Screening test cost	2	-
Audiology diagnostic test cost	295	Beta; alpha=1, beta=295
Hearing aid device(s) cost	3,890	Gamma; shape=1, scale=3890
Yearly Hearing aid recurring cost	910	Varied along with device cost
Cochlear implantation cost	54,380	-
Yearly recurring costs, cochlear implantation	1,260-1,400	-

RESULTS: PROBABILISTIC UNCERTAINTY ANALYSIS

- -Current Detection
- -Screen q1, begin age 45
- -Screen q1, begin age 55
- —Screen q1, begin age 65
- —Screen q1, begin age 75
- —Screen q5, begin age 75

RESULTS: EVPLAND EVPPL

- Population (p)EVPI: \$8.2-12.6 billion
 - This is the expected monetary value of reducing all uncertainty across the 5 parameters
- Population (p)EVPPI: \$1.3-2.4 billion
 - This is the expected monetary value of reducing all uncertainty for the effectiveness of hearing screening

ANALYTIC OVERVIEW

- Extended the hearing screening CEA
- Assigned distributions to key uncertain inputs to perform probabilistic uncertainty analysis (PUA)
- Calculated expected value of perfect information (EVPI) and expected value of partial perfect information (EVPPI)

JAMA Health Forum.

Original Investigation

Estimated Monetary Value of Future Research Clarifying Uncertainties Around the Optimal Adult Hearing Screening Schedule

Ethan D. Borre, PhD; Evan R. Myers, MD, MPH; Judy R. Dubno, PhD; Susan D. Emmett, MD, MPH; Juliessa M. Pavon, MD; Howard W. Francis, MD, MBA; Osondu Ogbuoji, MBBS, MPH, ScD; Gillian D. Sanders Schmidler, PhD

