

Biostatistics in Biomedical and Clinical Research

Sandra Taylor, Ph.D.
Clinical and Translational Science Center
University of California, Davis
30 April 2013

Do I really need a statistician?

- "My study is really simple."
- "I don't have funding to support a statistician."
- "I don't know any statisticians."
- "A statistician will make my study more complicated or turn it into a statistics research project."

Goals and objectives

- Understand the role of statisticians in biomedical research and clinical trials
 - What we can do for you
 - When we should be involved
 - Why it's important
- Provide pointers for working with statisticians
- Understand what resources are available and how to access those resources

Where are statisticians involved in research projects/clinical trials?

Where are statisticians involved in research projects/clinical trials?

Why and when to work with a statistician?

Planning the study

- Study design, randomization, sample size
- Proposal preparation

Conducting the study

Interim analyses, DSMB

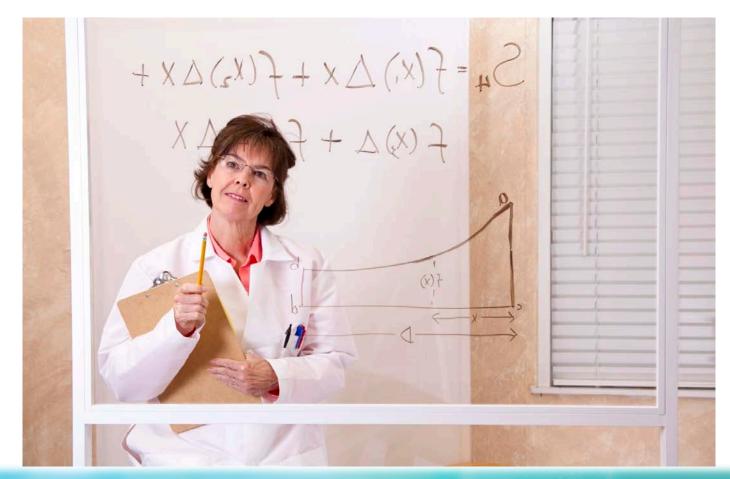
Evaluating the results

Conducting statistical analyses

Reporting the results

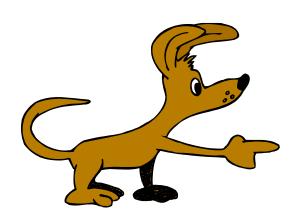
- Interpreting the results
- Manuscript preparation

The Research Process



"Gee, I wonder if..."

Planning Stage Involvement



Planning Stage Involvement

Statistics can't fix a poorly designed study!

Planning Stage Activities Not just sample size calculations

- Develop specific aims
- Identify endpoints and formulate testable hypotheses
- Identify confounding factors, biases
- Develop study design, randomization scheme, matching protocol
- Conduct sample size calculations and prepare statistical analysis plan

Formulating specific aims

- Identify parameters of interest
- Specify testable hypotheses
 - Determines statistical methods
- Specific aims determine
 - Study design
 - Sample size calculations
- Identify fatal flaws

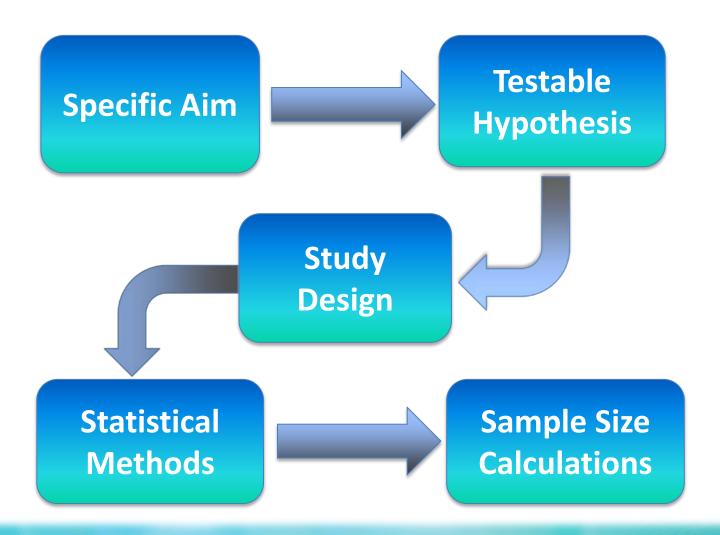
Specific Aim 1: Determine if new treatment is better than standard care.

- What constitutes better?
- What measureable parameter reflects better?
 - Survival, number of events, mean value?
- What testable hypothesis addresses the specific aim?
 - H_o: Mean cholesterol under new treatment does not differ from standard care
 - H_a: Mean cholesterol under new treatment differs from standard care

Study type and design considerations

Prospective Study

- Randomization
- Stratification
- Matching
- Interim analyses, adaptive or sequential designs


Retrospective Study

- Confounding variables
- Site effects and biases in data often overlooked

How many subjects do I need?

- Too few insufficient power to detect differences
- Too many unnecessary costs
- Statisticians need input from researchers to determine sample size requirements.

Sample size determination comes at the end of a series of steps.

How is sample size determined?

Depends on:

- Specific aim primary hypothesis of the study
- Study design
 - These two influence the statistical test.
- Effect size to be detected
- Variability of the response variable
 - Researchers need to provide this information

Example: New medication study

- Test: H_o : $\mu_{new} = \mu_{old}$ vs. H_a : $\mu_{new} \neq \mu_{old}$
- Design: Randomized into each arm
- Statistical method: t-test

$$n = \frac{\left(Z_{\alpha/2} + Z_{\beta}\right)^2 \sigma^2}{\Delta^2}$$

• σ^2 = variance; Δ = effect size to detect

Researchers need to provide this information.

- Published results
- Pilot data
- Clinically meaningful change

Sample size calculations may not be straight-forward

- More complex designs require more complex calculations
- Examples:
 - Longitudinal studies
 - Cross-over studies
 - Correlation of outcomes
- Sometimes simulations are required

Sample size calculations may not be straight-forward

- More complex designs require more complex calculations
- Examples:
 - Longitudinal studies
 - Cross-over studies
 - Correlation of outcomes
- Sometimes simulations are required

THERE IS NO MAGIC NUMBER.

Proposal Content

Proposal sections involving statistics

- Sample size justification
- Statistical analysis plan
 - Statistical methods for each aim

For clinical trials,

Interim analyses/Early stopping rules

Engage a statistician to write or at least review these sections.

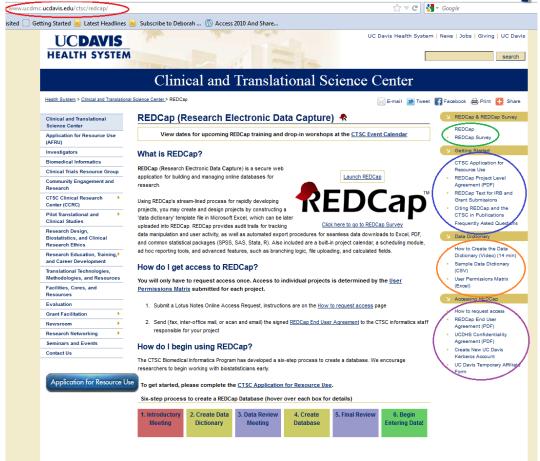
Common statistical problems in proposals

- Sample size justification absent or insufficiently justified
- Lack of statistical analysis plan for all aims, including secondary aims
- Inappropriate statistical analysis methods

Common statistical problems in proposals

- Sample size justification absent or insufficiently justified
- Lack of statistical analysis plan for all aims, including secondary aims
- Inappropriate statistical analysis methods

These issues can doom a proposal.



Data Collection and Compilation

Data Collection and Compilation

Valid results require

- Collection of accurate data
- Clear and accurate data compilation
- Create <u>workable</u> and <u>documented</u> data sets
- QA/QC procedures
 - Validation during data entry
 - Periodically audit the data
 - Conduct internal validation of final data

Bad Scene!

	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	Compa	arison of C	rug A a	and Dru	ıg B							
2	Drug A	Age of Patient	Patient	Height	Weight	24hrhct	blood pressure	tumor	Race	Date	complications	
3			Gender	(inches)	(pound)			stage		enrolled		
4												
5	1	25	Male	61"	>350	38%	120/80	2-3	Hipanic	1/15/99	no	
6	2	65+	female	5'8"	161	32	140/90	II	White	2/05/1999	yes	
7	3	?	Male	120cm		12	>160/110	IV	Black	Jan 98	yes, pneumonia	
8	4	31	m	5'6"	obse	40	40 sys 105 dias	?	African-An			
9	5	42	f	>6 ft	normal	39	missing	=>2	W	Feb 99		
10	6	45	f	5.7	160	29	80/120		В	last fall	n	
11	7	unknown	?	6	145	35	normal	1	W	2/30/99	n	
12	8	55	m	72	161.45	12/39			African-An	6-15-00	у	
13	9	6 months	f	66	174	38	160/110	3	Asian	14/12/00	у	
14	10	21	f	5'								
15												
16	Drug B											
17	1	55	m	61	145	normal	120/80 120/90	IV	Native Am	6/20/	3	
18	2	45	f	4"11	166	?	135/95	2b	none	7/14/99	n	
19	3	32	male	5'13"	171	38		not staged	NA	8/30/99	n	
20	4	44	na	65	?	40	120/80		?	09/01/00	n	
21	5	66	fem	71	0	41	140/90		W	Sep 14th	y, sepsis	
22	6	71	unknown	172	199	38	>160/110	_	b	unknown	y, died	
23	7	45	m	?	204			1	b	12/25/00	n	
24	8	34	m	NA	145	36	130	3	W	July 97	n	
25	9	13	m	66	161	39	166/115		W	06/06/99	n	
26	10	66	m	68	176	41	1120/80	3	W	01/21/58	n	
27												
28	Average	45		65	155	38						

RedCAP is user-friendly alternative.

Leverage informatics and biostatistics expertise

- Medical informatics group can
 - Create forms for data collection
 - Extract information from EMR
- Use inter-disciplinary team to determine what information to collect and how
 - Investigator, practitioners, biostatistician, informatics specialist
 - Ensures information is collected and compiled in a manner that facilitates analysis

Data Do's and Don'ts

- Use RedCAP where possible
- Assign unique ID to each subject and use consistently
- Remove all PHI prior submitting to statistician
- Unambiguously and consistently specify missing values
 - Avoid using "0" or blanks for missing values
- Avoid free text fields



Go forth and collect data!

Statistician activities during the study

- Sometimes limited involvement by statistician
- Involvement can include
 - Conducting interim analyses
 - Serving on DSMB
- Some study designs entail periodic reassessments and statistician will necessarily be involved during the study
 - Two-stage, adaptive or sequential trials

Analysis and Reporting



Analyzing the data

- Conduct statistical analyses
 - Data validation
 - Run statistical tests
- Interpret the results
- Prepare tables and figures to illustrate findings

Working with a Statistician to Analyze your Data

Range of support provided

If statistician analyzes the data...

- Remove PHI
- Provide "clean", documented data set
- Allow sufficient time for analysis
 - Rule of Thumb is 4 to 6 weeks
- Provide references from similar studies if available
- Iterative and interactive process

Report/Publication Preparation

- Craft statistical analysis section
- Contribute to results section
- Generate tables and figures

Biostatistics Resources at UC Davis

Clinical and Translational Science Center

- Biostatistics Workshop: 12-1 on Tuesdays sltaylor@ucdavis.edu
- Biostatistics Core
 - Assist with study design, grant writing, data analysis and interpretation
 - Application for Resource Use (AFRU)
 http://www.ucdmc.ucdavis.edu/ctsc/
- Division of Biostatistics

Other CTSC Resources

- Biomedical Informatics
- Clinical Research Center
- Clinical Trials Resource Group
- Community Engagement
- Clinical Research Ethics
- Translational Technologies
- Pilot Studies Funding

www.ucdmc.ucdavis.edu/ctsc/