UCDAVIS HEALTH

Bulk RNA Sequencing in Clinical and Translational Research

CLINICAL AND TRANSLATIONAL SCIENCE CENTER

Blythe Durbin-Johnson, Ph.D. Principal Statistician, Division of Biostatistics

The UC Davis CTSC receives support from the NIH National Center for Advancing Translational Sciences (award TR001860).

Outline

- What is RNA sequencing and what can it tell you?
- Designing an RNASeq experiment
- Analyzing your data
- Resources

- RNA sequencing measures gene expression by directly sequencing reverse-transcribed mRNA
- Bulk RNASeq can tell you:
 - Gene expression
 - Transcript expression (with appropriate protocol)
- Limitations
 - Expression measured will be average of that in whole sample
 - Heterogeneity of cell types can add noise
 - Quantification of gene expression is relative

- Steps in RNASequencing (short read)
 - 1. RNA extraction
 - 2. Enrichment for mRNA
 - 3. Fragment RNA
 - 4. Reverse transcribe, add adapters
 - 5. PCR amplification
 - 6. Sequence

Clinical and Translational Science Center

- Principles of good experimental design in non-omics experiments still apply
- Generally, a minimum of 3 samples/group is required to be able to even conduct any statistical analysis
 - Continuous covariates and very large multifactorial designs are exceptions
 - -Adequate power will often require more samples

- RNA extraction batch tends to be the largest source of technical variability
- If possible, have same person do all RNA extraction in a single session
- Otherwise, RANDOMIZE RNA extraction batches so that they are independent of variables of interest, as much as possible
 - Can adjust for RNA extraction batch in statistical model after the fact, if not completely confounded with variables of interest

• NEVER, EVER DO THIS:

- Day 1: Extract RNA for all treated samples
- Day 2: Extract RNA for all control samples
- Your experiment will be unable to distinguish batch and treatment effects
- This is UNFIXABLE with statistics

- Sample pooling is sometimes necessary to have enough RNA
- In this case, your unit of replication is pool rather than sample
- Still need replicates
 - Don't pool all of your control samples into one pool and all of your treated samples into another pool
- Each pool should consist of distinct samples
 - Don't e.g. pool all of your control samples together then split into groups for library prep

- If you are using more than one lane of sequencing, lane-to-lane variability in sequencing can be mitigated by doing the following:
 - Prepare barcoded libraries—allows samples to be distinguished
 - Pool all libraries
 - Split pool across all lanes being used
- DNA Tech Core at the Genome Center does this
- Make sure your sequencing provider is doing something similar
- If you have more samples than unique barcodes, will need to randomize samples into lanes

- Power and required sample size depends on:
 - 1. Amount of variability
 - Human >> mouse >> cell line
 - 2. Size of effect to be detected
 - Subtle effects require more samples than large effects
 - 3. Analysis used

- Resampling of **pilot data** gives best estimates of power
- Other approaches can be unreliable
 - Different methods give very different estimates
 - Too many unverifiable assumptions

Poplawski A, Binder H. Feasibility of sample size calculation for RNA-seq studies. Brief Bioinform. 2018 Jul 20;19(4):713-720. doi: 10.1093/bib/bbw144. PMID: 28100468.

- Experience shows, however:
 - 3 replicates/group is typically adequate for cell line studies
 - Human studies require 1 or 2 orders of magnitude above that

- Matching groups by sex, age, comorbidities, smoking status, etc. reduces bias
- Covariate adjustment in analysis can reduce variability
- However, isolated subjects that are very different from the group can't be accounted for in analysis:
 - E.g. only male or only smoker in group of women/nonsmokers
 - Try to avoid this situation
 - Throwing a subject from an unreplicated group in "just to see" is a waste of money
- Using subjects as their own control (e.g. pre-post design) can increase power

Analyzing your data

Preprocessing

- You will get fastq files from your sequencing provider
 - Contains sequences for every read + quality scores
 - Side note: sequencing providers only keep your data for a limited time, plan to download data to your storage
 ASAP or risk losing it!

Preprocessing

- Raw sequence data need to be preprocessed into a form that can be analyzed readily
- Requires access to a compute cluster + knowledge of linux command line
- Or hire someone to do preprocessing

 Statisticians, even with 'omics experience, will generally not do this for you
 - Need to plan specifically for bioinformatics support

Preprocessing

- Data preprocessing includes:
 - Removing bases of unwanted sequence (Ex. vectors, adapter, primer sequence, polyA tails)
 - Merge/join short overlapping paired-end reads
 - Remove low quality bases or N characters
 - Remove reads originating from PCR duplication
 - Remove reads that are not of primary interest (contamination)
 - Remove too short reads
- Cleaned sequence data aligned to genome
- Reads belonging to each gene (exon, transcript) counted/quantified

Statistical Analysis

Some common analyses of RNASeq data:

-Visual summaries

- Differential expression analysis
- Pathway enrichment analyses
- Weighted Gene Coexpression Network Analysis (WGCNA)

Visualizations

Multidimensional Scaling Plot

- Shows relative distances between whole transcriptomic profile
- Useful for identifying unusual samples
- More distance between groups often means more DE genes in later analysis

Visualizations

Heatmap

- Shows expression level of individual samples for selected genes
- Most useful when limited to focused set of genes
 - Can't show gene names for >50 genes
- Genes typically clustered based on hierarchical clustering dendrogram
- Samples often clustered as well

Hawes, C.E., Elizaldi, S.R., Beckman, D. *et al.* Neuroinflammatory transcriptional programs induced in rhesus pre-frontal cortex white matter during acute SHIV infection. *J Neuroinflammation* **19**, 250 (2022). https://doi.org/10.1186/s12974-022-02610-y

Visualizations

S vs. P, Control

Volcano Plot

- Displays differential expression results
- Plot of -log10 p-value by log fold change
- Can quickly show if DE genes are predominantly up- or downregulated
- Top genes are labelled

Differential Expression Analysis

- What genes differ in expression between groups?
- Or, what genes are correlated with a continuous outcome?
- Steps in DE:
 - Filter low expressed/uninteresting genes
 - Normalize data to account for library size differences
 - Transform/weight data if required by model
 - -Fit statistical model to each gene
 - Adjust p-values for multiple testing
 "Significant" means adjusted P < 0.05

Differential Expression Analysis

- Popular Bioconductor packages for DE include:
 - DESeq, based on negative binomial model fitted to gene counts
 - edgeR, based on negative binomial model fitted to gene counts
 - limma-voom, based on weighted linear models fitted to logtransformed counts per million reads
- All of these can accommodate complicated study designs
- limma allows for random effects
- Comparison papers show limma-voom better controls the false discovery rate at the nominal rate

Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013 Mar 9;14:91. doi: 10.1186/1471-2105-14-91. PMID: 23497356; PMCID: PMC3608160.

Differential Expression Analysis

• A table of DE results might look like this (~10K rows not shown):

Gene.stable.ID	Gene.name	logFC	AveExpr	P.Value	adj.P.Val
ENSMUSG00000103477	5930409G06Rik	1.664192137	1.837293153	0.001950398	0.999161216
ENSMUSG0000020721	Helz	-0.363050365	7.501167612	0.003238648	0.999161216
ENSMUSG0000026051	Ecrg4	-1.255273365	2.499099269	0.003247058	0.999161216
ENSMUSG0000029798	Herc6	-1.445749184	2.050030151	0.003562989	0.999161216
ENSMUSG0000038872	Zfhx3	-0.378363542	8.239061179	0.003879801	0.999161216
ENSMUSG0000052675	Zfp112	1.11791828	3.113930496	0.004248763	0.999161216
ENSMUSG0000037108	Zcwpw1	0.591054065	4.725995765	0.004378957	0.999161216
ENSMUSG0000038010	Ccdc138	-0.840359112	4.178710837	0.004715516	0.999161216
ENSMUSG00000014905	Dnajb9	-0.501504798	5.243296442	0.0050183	0.999161216
ENSMUSG0000022311	Csmd3	-0.877654845	3.42558905	0.005062491	0.999161216
ENSMUSG0000090272	Mndal	1.371770654	2.262543233	0.005264431	0.999161216
ENSMUSG00000044968	Napepld	-1.666212304	2.06202902	0.005863092	0.999161216
ENSMUSG0000025507	Pidd1	1.268521656	2.077240363	0.006642031	0.999161216
ENSMUSG0000034912	Mdga2	-0.53890529	5.107036276	0.006768523	0.999161216
ENSMUSG0000067336	Bmpr2	-0.303627268	7.83187622	0.006771913	0.999161216

Pathway Analysis

- DE analyses can be difficult to interpret
- Pathway or gene ontology enrichment analyses can summarize DE results into a more manageable form
- What pathways/gene sets are overrepresented among significant genes, or at the top of the DE results?
- Common databases:
 - KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways
 - GO (Gene Ontology), a controlled vocabulary for describing gene products
 - Reactome pathways
 - MSigDB (Molecular Signatures Database), used by GSEA
 - Ingenuity Pathway Analysis (requires license for use)

Pathway Analysis

- Enrichment analyses often take one of two approaches:
- 1. Is a given gene set overrepresented in my gene list (e.g. significant genes)?
 - Úses Fisher's Exact Test or hypergeometric test
 - Approach taken by DAVID (<u>https://david.ncifcrf.gov/helps/tutorial.pdf</u>)
 - 2. Is a given gene set ranked higher in my DE analysis results (or other ranked list) than would be expected by chance
 - Kolmogorov-Smirnov test, GSEA's leading edge analysis
- Gene ontology is complicated by directed acyclic graph structure of GO terms
 - R package topGO applies either of the above approaches in a way that preferentially tests more specific terms (e.g. "positive regulation of granzyme B production") over less specific ones ("immune system process").

Pathway Analysis

- Enrichment analysis results are a descriptive tool, not a smoking gun
- Top KEGG enrichment results using data from 2018 paper: Coronavirus disease - COVID-19

(2018)

Clinical and Translational Science Center

WGCNA

 Weighted Gene Coexpression Network Analysis (Langfelder and Horvath, 2008) identifies modules of coexpressed genes:

Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics* **9**, 559 (2008). https://doi.org/10.1186/1471-2105-9-559

WGCNA

- "Eigengenes" of modules (first principal components of gene expression) provide useful summary
 - ~10 eigengenes vs. 10K genes
 - Easier to calculate/interpret correlations given large quantities of metadata
 - Great for integrating matched data from multiple omics methods

Yang, J., Zhang, J., Fan, R., Zhao, W., Han, T., Duan, K., ... & Yang, X. (2020). Identifying Potential Candidate Hub Genes and Functionally Enriched Pathways in the Immune Responses to Quadrivalent Inactivated Influenza Vaccines in the Elderly Through Co-Expression Network Analysis. Frontiers in immunology, 11, 603337.

HEALTH

Module-trait relationships													
MEblue		=0.033 (0.8)	=0.14 (0.3)	-0.069 (0.6)	=0.015 (0.9)	0.095 (0.5)	=0.092 (0.5)	=0.029 (0.8)	0.13 (0.3)	0.047 (0.7)	0.16 (0.2)	0.16 (0.2)	,
MEbrown Interleukin		0.13 (0.3)	0.12 (0.4)	0.0021 (1)	-0.16 (0.2)	-0.2 (0.1)	-0.018 (0.9)	-0.047 (0.7)	-0.045 (0.7)	0.12 (0.4)	-0.13 (0.3)	-0.025 (0.8)	
MEgreen Neutrophil Activation		0.05 (0.7)	0.25 (0.05)	0.084 (0.5)	-0.12 (0.4)	-0.22 (0.08)	0.035 (0.8)	0.053 (0.7)	-0.14 (0.3)	0.098 (0.4)	-0.22 (0.08)	-0.13 (0.3)	- 0.5
MEblack Fluid Regulation		0.29 (0.02)	0.13 (0.3)	0.018 (0.9)	-0.052 (0.7)	-0.19 (0.1)	-0.044 (0.7)	-0.12 (0.4)	-0.12 (0.4)	-0.036 (0.8)	-0.26 (0.04)	-0.15 (0.2)	
MEpink		0.15 (0.2)	-0.07 (0.6)	-0.049 (0.7)	-0.12 (0.4)	0.017 (0.9)	0.15 (0.2)	-0.14 (0.3)	-0.069 (0.6)	-0.15 (0.2)	-0.14 (0.3)	-0.1 (0.4)	- •
MEred Mycloid Cell		0.28 (0.03)	0.04 (0.8)	0.19 (0.1)	0.17 (0.2)	0.023 (0.9)	-0.05 (0.7)	-0.073 (0.6)	-0.068 (0.6)	-0.032 (0.8)	-0.15 (0.2)	-0.13 (0.3)	
AEturquoise		-0.17 (0.2)	0.11 (0.4)	0.13 (0.3)	0.079 (0.5)	0.056 (0.7)	-0.0025 (1)	0.14 (0.3)	-0.11 (0.4)	-0.00048 (1)	-0.053 (0.7)	-0.089 (0.5)	0.5
MEyellow		-0.12 (0.3)	-0.058 (0.7)	-0.083 (0.5)	-0.034 (0.8)	0.18 (0.1)	-0.025 (0.8)	-0.02 (0.9)	-0.016 (0.9)	-0.081 (0.5)	-0.03 (0.8)	=0.0 44 (0.7)	
MEgrey		0.021 (0.9)	-0.3 (0.02)	-0.039 (0.8)	0.067 (0.6)	0.2 (0.1)	-0.012 (0.9)	-0.062 (0.6)	0.19 (0.1)	-0.014 (0.9)	0.24 (0.06)	0.14 (0.3)	
		Gentlet	Page Page	History Long	and and	4-scion	140	Cult Cult	IN/H	CAREH	AP.	18	
			,		0								

Resources

- Available to anyone on fee-for-service basis:
 - UCD Genome Center DNA Technologies Core Library preparation, sequencing, and other services <u>https://dnatech.genomecenter.ucdavis.edu/</u>
 - UCD Genome Center Bioinformatics Core Wide range of analysis services including everything mentioned in this talk <u>https://bioinformatics.ucdavis.edu/</u>
- For IDDRC projects:
 - IDDRC BBRD Core

Statistical analysis including gene expression data <u>https://health.ucdavis.edu/mindinstitute/centers/intellectual-developmental-disabilities-research/cores/bbrd.html</u>

 Cancer Center Genomics Shared Resource: https://health.ucdavis.edu/cancer/research/sharedresources/ger.html

Acknowledgements

- UC Davis CTSC
- MIND Institute IDDRC P50 HD103526

