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Learning Objectives

1. Define causes and effects

2. Understand how causal inference is used in medical research

3. Define confounding and understand how it makes causal inference difficult

4. Understand how to select study design and analysis methods to answer causal 
questions
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Potential outcomes

 A potential outcome is the outcome that an individual would experience if we 
intervene to give them a particular treatment or exposure.

 Denoted 𝑌𝑌 𝑥𝑥 ; may or may not be the outcome that actually occurs, 𝑌𝑌
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Example: phototherapy for neonatal jaundice

 Example: treating neonatal jaundice (excess bilirubin) with light exposure 
(“phototherapy”)
– Outcome (𝑌𝑌): 1 = condition worsens within 48 hours; 0 = not.
– Treatment (𝑋𝑋): 1 = phototherapy; 0 = watchful waiting

𝑌𝑌(1): if we choose phototherapy, will the jaundice worsen?
𝑌𝑌(0): if we choose watchful waiting, will the jaundice worsen?

 Data set: 20,731 newborns at 12 NorCal Kaiser hospitals between 1995-2004, with 
bilirubin levels within 3mg/dL of the guideline threshold for phototherapy 
– (Newman et al, Pediatrics 2009; https://doi.org/10.1542/peds.2008-1635)

 Analysis: Vittinghoff et al, Regression Methods in Biostatistics 2e, 2012, Springer
– https://link.springer.com/book/10.1007/978-1-4614-1353-0

https://doi.org/10.1542/peds.2008-1635
https://link.springer.com/book/10.1007/978-1-4614-1353-0
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Defining causes

 “𝑥𝑥 causes 𝑦𝑦” if:
– 𝑦𝑦 would occur if we did 𝑥𝑥, and 
– 𝑦𝑦 would not occur if we did some alternative to 𝑥𝑥

 If a given infant would recover with phototherapy and not with watchful 
waiting, then phototherapy causes recovery for that infant.

 𝑌𝑌 𝑥𝑥 = 𝑦𝑦 and 𝑌𝑌 𝑥𝑥′ ≠ 𝑦𝑦 for some 𝑥𝑥′ ≠ 𝑥𝑥

 Necessary cause: 𝑦𝑦 would not occur for any alternative to 𝑥𝑥.

 Sufficient cause: 𝑦𝑦 would occur if we did 𝑥𝑥, no matter what else we also did.
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Defining effects

 The effect of an intervention on an individual is a comparison between 
the potential outcomes for that intervention and some alternative: 
𝑌𝑌(1) versus 𝑌𝑌 0 .

– Difference in potential outcomes: 𝑌𝑌 1 − 𝑌𝑌 0

– Potential outcomes ratio: 
𝑌𝑌 1
𝑌𝑌 0

– Relative difference in potential outcomes: 
𝑌𝑌 1 −𝑌𝑌 0

Y 0
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Average effects

 Ε 𝑌𝑌 𝑥𝑥 : Average potential outcome of treatment 𝑥𝑥 for a population of individuals
 Ε 𝑌𝑌 𝑥𝑥 − 𝑌𝑌 𝑥𝑥𝑥 : Average Treatment Effect (ATE) or Average Causal Effect (ACE)
 Ε 𝑌𝑌 𝑥𝑥 |𝑍𝑍 = 𝑧𝑧 : Average potential outcome of treatment 𝑥𝑥 in subpopulation 𝑍𝑍 = 𝑧𝑧
 Ε 𝑌𝑌 1 − 𝑌𝑌(0)|𝑋𝑋 = 1 : “Average Treatment effect among the Treated” (ATT)

 For binary outcomes with 𝑌𝑌 = 1 denoting the adverse event:
– Potential risk: 𝑃𝑃 𝑌𝑌 𝑥𝑥 = 1 = Ε 𝑌𝑌 𝑥𝑥
– Causal risk difference: 𝑃𝑃 𝑌𝑌 𝑥𝑥 = 1 − 𝑃𝑃 𝑌𝑌 𝑥𝑥𝑥 = 1 = Ε 𝑌𝑌 𝑥𝑥 − 𝑌𝑌 𝑥𝑥𝑥
– Causal risk ratio: 𝑃𝑃 𝑌𝑌 𝑥𝑥 = 1 / 𝑃𝑃 𝑌𝑌 𝑥𝑥∗ = 1
– Causal odds ratio:

𝑃𝑃 𝑌𝑌 𝑥𝑥 = 1 /𝑃𝑃 𝑌𝑌 𝑥𝑥 = 0
𝑃𝑃 𝑌𝑌 𝑥𝑥𝑥 = 1 /𝑃𝑃 𝑌𝑌 𝑥𝑥𝑥 = 0
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Calculating effects

 Suppose we have data on 10 individuals 
(e.g., newborns with jaundice)

 We would like to estimate the average 
potential outcomes and average causal 
effect: 
– �Ε 𝑌𝑌 1 = 1

n
𝑌𝑌1 1 + 𝑌𝑌2 1 + ⋯+ 𝑌𝑌10 1

– �Ε 𝑌𝑌 1 − 𝑌𝑌(0) = �Ε 𝑌𝑌 1 − �Ε 𝑌𝑌 0

 What do we know about 𝑌𝑌(1) and 𝑌𝑌(0)?

𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 1 ? ?
0 1 ? ?
0 0 ? ?
0 1 ? ?
0 1 ? ?
1 0 ? ?
1 1 ? ?
1 1 ? ?
1 0 ? ?
1 1 ? ?
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Basic assumptions for causal inference

 Q1: Are the observed treatments the same as the potential interventions we are 
interested in?
– How long is phototherapy applied?
– How bright is the light?
– “Consistency assumption”: If 𝑋𝑋 = 𝑥𝑥, then 𝑌𝑌 𝑥𝑥 = 𝑌𝑌

 Q2: does treating one individual affect any other individuals?
– Vaccinating one individual can protect others
– Educating one individual can affect others
– “Non-interference assumption”

 Consistency + Non-interference = “Stable Treatment Value Assumption” (SUTVA)
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Basic assumptions for causal inference

 If we assume consistency and non-
interference, we can fill in half of the potential 
outcomes:

𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 1 ? ?
0 1 ? ?
0 0 ? ?
0 1 ? ?
0 1 ? ?
1 0 ? ?
1 1 ? ?
1 1 ? ?
1 0 ? ?
1 1 ? ?
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Basic assumptions for causal inference

 If we assume consistency and non-
interference, we can fill in half of the potential 
outcomes:

 For 𝑋𝑋 = 0, 𝑌𝑌 0 = 𝑌𝑌

𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 1 ? 1
0 1 ? 1
0 0 ? 0
0 1 ? 1
0 1 ? 1
1 0 ? ?
1 1 ? ?
1 1 ? ?
1 0 ? ?
1 1 ? ?
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Basic assumptions for causal inference

 If we assume consistency and non-
interference, we can fill in half of the potential 
outcomes:

 For 𝑋𝑋 = 0, 𝑌𝑌 0 = 𝑌𝑌

 For 𝑋𝑋 = 1, 𝑌𝑌 1 = 𝑌𝑌

𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 1 ? 1
0 1 ? 1
0 0 ? 0
0 1 ? 1
0 1 ? 1
1 0 0 ?
1 1 1 ?
1 1 1 ?
1 0 0 ?
1 1 1 ?
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The Fundamental Problem of Causal Inference

 Even assuming consistency and non-
interference:
– We are still missing half of the potential 

outcomes
– No rows are complete

 If we want to estimate average potential 
outcomes and risk differences, we need to 
decide what to do about the missing potential 
outcomes.

𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 1 ? 1
0 1 ? 1
0 0 ? 0
0 1 ? 1
0 1 ? 1
1 0 0 ?
1 1 1 ?
1 1 1 ?
1 0 0 ?
1 1 1 ?
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Analysis 1: Assume treatment is randomized

 We could assume observed treatments are 
completely random, or at least, assume that 
the observed treatments are independent
of the potential outcomes (i.e., 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋)  
(an independence assumption). Then:

 Ε Y 1 |𝑋𝑋 = 0 = E Y 1 = Ε Y 1 |𝑋𝑋 = 1 =
Ε 𝑌𝑌 𝑋𝑋 = 1

 �Ε 𝑌𝑌|𝑋𝑋 = 1 = 1
5

0 + 1 + 0 + 1 + 1 = 3
5

 �Ε 𝑌𝑌 1 = 1
10

5 × 3
5

+ 3 = 3
5

= 60%

𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 1 3/5 1
0 1 3/5 1
0 0 3/5 0
0 1 3/5 1
0 1 3/5 1
1 0 0 ?
1 1 1 ?
1 1 1 ?
1 0 0 ?
1 1 1 ?
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Analysis 1: Assume treatment is randomized

 Similarly: 
Ε Y 0 |𝑋𝑋 = 1 = E Y 0 = Ε Y 0 |𝑋𝑋 = 0 = Ε 𝑌𝑌 𝑋𝑋 = 0

 �Ε 𝑌𝑌|𝑋𝑋 = 0 = 1
5

1 + 1 + 0 + 1 + 1 = 4
5

 �Ε Y 0 = 1
10

4 + 5 × 4
5

= 4
5

= 80%

 �Ε Y 1 − 𝑌𝑌(0) = �Ε Y 1 − �Ε 𝑌𝑌 0

=
3
5
−

4
5

= −
1
5

= −20%

 Given our assumptions, we would estimate that treatment 1 
(phototherapy) reduces the risk of worsening jaundice by 20 
percentage points.

𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 1 3/5 1
0 1 3/5 1
0 0 3/5 0
0 1 3/5 1
0 1 3/5 1
1 0 0 4/5
1 1 1 4/5
1 1 1 4/5
1 0 0 4/5
1 1 1 4/5
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Analyzing the phototherapy data, assuming observed 
treatment is completely random

Condition 
Worsened

(𝒀𝒀 = 𝟏𝟏)

Condition Stabilized 
or Improving

(𝒀𝒀 = 𝟎𝟎)
All

Phototherapy 
(𝑿𝑿 = 𝟏𝟏) 15 (0.3%) 4569 (99.7%) 4584

(22%)

Watchful Waiting 
(𝑿𝑿 = 𝟎𝟎) 113 (0.7%) 16,034 (99.3%) 16,147

(78%)

All 128 (0.6%) 20,603 (99.4%) 20,731

Under our assumptions (consistency, no interference, observed treatment is independent of the 
potential outcomes):
• Estimated Causal Risk (of jaundice worsening if we choose phototherapy) =  �P 𝑌𝑌 1 = 1 = 0.3%
• Estimated Causal Risk (of jaundice worsening if we choose waiting) =  �P 𝑌𝑌 0 = 1 = 0.7%
• Estimated Causal Risk Difference = 0.3% − 0.7% = −0.4%
That is, we estimate that giving phototherapy to all cases would reduce the event rate by 0.4%
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Not-completely-random treatment assignment

 Maybe, the pattern of observed treatments is not completely random

 Maybe, the infants who received phototherapy have different characteristics than 
those who were treated with watchful waiting
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Gestational Age and Phototherapy

Watchful Waiting 
(𝑿𝑿 = 𝟎𝟎)

Phototherapy 
(𝑿𝑿 = 𝟏𝟏) All

Gestational Age ≤ 37 weeks 
(𝒁𝒁 = 𝟎𝟎) 4240 (69%) 1900 (31%) 6140

(30%)

Gestational Age > 37 weeks 
(𝒁𝒁 = 𝟏𝟏) 11,907 (82%) 2684 (18%) 14,591

(70%)

All 16,147 (78%) 4584 (22%) 20,731
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Non-random treatment assignment

 We know 𝑋𝑋 is not independent of 𝑍𝑍
 We’re not sure if 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋

 Suppose 𝑍𝑍 indicates the gestational age of the 
infant, categorized: 
– 𝑍𝑍 = 0 if gest. age ≤ 37 weeks
– 𝑍𝑍 = 1 if gest. age > 37 weeks

 2 of 5 infants who received phototherapy had 
gest. age > 37 weeks, versus 3 of 5 of infants 
who did not receive phototherapy

 Does it still make sense to just average the 
observed outcomes from all the phototherapy 
infants together?

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 0 1 ? 1
0 0 1 ? 1
1 0 0 ? 0
1 0 1 ? 1
1 0 1 ? 1
0 1 0 0 ?
0 1 1 1 ?
0 1 1 1 ?
1 1 0 0 ?
1 1 1 1 ?
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Analysis 2: Stratification

 Maybe we are willing to assume that the 
observed treatment is being randomly 
chosen, conditional on gestational age 𝑍𝑍; 
(mathematically: 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋|𝑍𝑍). This is called a 
“conditional independence” assumption (or 
“conditional exchangeability” or “ignorability”)

 Then:

Ε 𝑌𝑌 1 𝑍𝑍 = 0,𝑋𝑋 = 0 = Ε 𝑌𝑌 1 𝑍𝑍 = 0,𝑋𝑋 = 1
= Ε 𝑌𝑌 𝑍𝑍 = 0,𝑋𝑋 = 1

Now, we have a basis for imputing the missing 
outcomes again:

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 0 1 2/3 1
0 0 1 2/3 1
1 0 0 ? 0
1 0 1 ? 1
1 0 1 ? 1
0 1 0 0 ?
0 1 1 1 ?
0 1 1 1 ?
1 1 0 0 ?
1 1 1 1 ?
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Analysis 2: Stratification

 Maybe we are willing to assume that the 
observed treatment is being randomly 
chosen, conditional on gestational age 𝑍𝑍; 
(mathematically: 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋|𝑍𝑍). This is called a 
“conditional independence” assumption (or 
“conditional exchangeability” or “ignorability”)

 Then:

Ε 𝑌𝑌 1 𝑍𝑍 = 1,𝑋𝑋 = 0 = Ε 𝑌𝑌 1 𝑍𝑍 = 1,𝑋𝑋 = 1
= Ε 𝑌𝑌 𝑍𝑍 = 1,𝑋𝑋 = 1

Now, we have a basis for imputing the missing 
outcomes again:

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 0 1 2/3 1
0 0 1 2/3 1
1 0 0 1/2 0
1 0 1 1/2 1
1 0 1 1/2 1
0 1 0 0 ?
0 1 1 1 ?
0 1 1 1 ?
1 1 0 0 ?
1 1 1 1 ?
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Analysis 2: Stratification

 Maybe we are willing to assume that the 
observed treatment is being randomly 
chosen, conditional on gestational age 𝑍𝑍; 
(mathematically: 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋|𝑍𝑍). This is called a 
“conditional independence” assumption (or 
“conditional exchangeability” or “ignorability”)

 Then:

Ε 𝑌𝑌 0 𝑋𝑋 = 1,𝑍𝑍 = 0 = Ε 𝑌𝑌 0 𝑋𝑋 = 0,𝑍𝑍 = 0
= Ε 𝑌𝑌 𝑋𝑋 = 0,𝑍𝑍 = 0

Now, we have a basis for imputing the missing 
outcomes again:

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 0 1 2/3 1
0 0 1 2/3 1
1 0 0 1/2 0
1 0 1 1/2 1
1 0 1 1/2 1
0 1 0 0 2/2
0 1 1 1 2/2
0 1 1 1 2/2
1 1 0 0 ?
1 1 1 1 ?
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Analysis 2: Stratification

 Maybe we are willing to assume that the 
observed treatment is being randomly 
chosen, conditional on gestational age 𝑍𝑍; 
(mathematically: 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋|𝑍𝑍). This is called a 
“conditional independence” assumption (or 
“conditional exchangeability” or “ignorability”)

 Then:

Ε 𝑌𝑌 0 𝑋𝑋 = 1,𝑍𝑍 = 1 = Ε 𝑌𝑌 0 𝑋𝑋 = 0,𝑍𝑍 = 1
= Ε 𝑌𝑌 𝑋𝑋 = 0,𝑍𝑍 = 1

Now, we have a basis for imputing the missing 
outcomes again:

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 0 1 2/3 1
0 0 1 2/3 1
1 0 0 1/2 0
1 0 1 1/2 1
1 0 1 1/2 1
0 1 0 0 2/2
0 1 1 1 2/2
0 1 1 1 2/2
1 1 0 0 2/3
1 1 1 1 2/3
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Analysis 2: Stratification

 Once we have imputed all of the 𝑌𝑌(1)s and 
𝑌𝑌 0 s, we can estimate �Ε[𝑌𝑌 0 ] and �Ε[𝑌𝑌 1 ]:

 �Ε 𝑌𝑌 1 = 1
10

2
3

× 2 + 1
2

× 3 + 2 + 1 = .58

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 0 1 2/3 1
0 0 1 2/3 1
1 0 0 1/2 0
1 0 1 1/2 1
1 0 1 1/2 1
0 1 0 0 2/2
0 1 1 1 2/2
0 1 1 1 2/2
1 1 0 0 2/3
1 1 1 1 2/3
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Analysis 2: Stratification

 Once we have imputed all of the 𝑌𝑌(1)s and 
𝑌𝑌 0 s, we can estimate �Ε[𝑌𝑌 0 ] and �Ε[𝑌𝑌 1 ]:

 �Ε 𝑌𝑌 1 = 1
10

2
3

× 2 + 1
2

× 3 + 2 + 1 = .58

 �Ε 𝑌𝑌 0 = 1
10

2 + 2 + 2
2

× 3 + 2
3

× 2 = .83

 �Ε 𝑌𝑌 1 − 𝑌𝑌 0 = .58 − .83 = −.25

 Compare with what we got from the 
unstratified analysis:

�Ε 𝑌𝑌 1 − 𝑌𝑌 0 = .6 − .8 = −.20

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

0 0 1 2/3 1
0 0 1 2/3 1
1 0 0 1/2 0
1 0 1 1/2 1
1 0 1 1/2 1
0 1 0 0 2/2
0 1 1 1 2/2
0 1 1 1 2/2
1 1 0 0 2/3
1 1 1 1 2/3



26Introduction to Causal Inference

Gestational Age, Phototherapy, and Worsened Jaundice

Condition 
Stabilized or 

Improving
(𝒀𝒀 = 𝟎𝟎)

Condition 
Worsened

(𝒀𝒀 = 𝟏𝟏) All All

Gestational Age ≤ 37 
weeks 

(𝒁𝒁 = 𝟎𝟎)

Watchful Waiting 
(𝑿𝑿 = 𝟎𝟎) 4154 (98.0%) 86 (2.0%) 4240

(69%) 6140
(30%)

Phototherapy 
(𝑿𝑿 = 𝟏𝟏) 1890 (99.5%) 10 (0.5%) 1900

(31%)

Gestational Age > 37 
weeks 

(𝒁𝒁 = 𝟏𝟏)

Watchful Waiting 
(𝑿𝑿 = 𝟎𝟎) 11,880 (99.8%) 27 (0.2%) 11,907

(82%) 14,591
(70%)Phototherapy 

(𝑿𝑿 = 𝟏𝟏) 2679 (99.8%) 5 (0.2%) 2684
(18%)

All 20,603 (99.4%) 128 (0.6%) 20,731

Estimated causal risk of phototherapy = 0.3%
Estimated causal risk of waiting = 0.8%

Estimated Causal Risk Difference from Stratified Analysis = −.5%
(Estimated Causal Risk Difference from Unstratified Analysis = −.4%)
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Analysis 3: Regression

 What if 𝑍𝑍 is a numeric variable, e.g., 
gestational age measured in weeks?

 Stratification likely won’t work: there aren’t 
any rows with 𝑍𝑍 = 37 and 𝑋𝑋 = 0 that we can 
use to estimate Ε 𝑌𝑌 𝑍𝑍 = 37,𝑋𝑋 = 0 .

 We could categorize 𝑍𝑍 as we did before, but 
maybe we need 𝑍𝑍 in its continuous form to 
justify 𝑌𝑌 ⫫ 𝑋𝑋(𝑥𝑥)|𝑍𝑍.

 However, we can still estimate 
Ε 𝑌𝑌 𝑍𝑍 = 37,𝑋𝑋 = 0 by fitting a regression 
model!

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 ? 1
35 0 1 ? 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 ?
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?
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Assumptions for Causal Regression Modeling

 Still need conditional independence: 
𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋|𝑍𝑍

 Still need consistency and non-interference
 Need all treatment options to be possible for 

every possible value of 𝑍𝑍: 
0 < 𝑃𝑃 𝑋𝑋 = 1 𝑍𝑍 = 𝑧𝑧 < 1

– Called “positivity assumption”; more of a 
practical requirement: if there some 
observations with 𝑋𝑋 = 1 and 𝑍𝑍 = 33 but 
none with 𝑋𝑋 = 0 and 𝑍𝑍 ≈ 33, then how can 
we reliably predict Ε[𝑌𝑌|𝑋𝑋 = 0,𝑍𝑍 = 33]?

– Will end up extrapolating, with extreme 
uncertainty (low precision).

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 ? 1
35 0 1 ? 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 ?
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?
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Estimating Causal Effects with Regression Modeling

 If our assumptions hold, then:
Ε 𝑌𝑌 1 𝑋𝑋 = 0,𝑍𝑍 = 𝑧𝑧 = Ε[𝑌𝑌|𝑋𝑋 = 0,𝑍𝑍 = 𝑧𝑧]

 We can impute the missing potential 
outcomes:

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 �Ε[𝑌𝑌|𝑋𝑋 = 1,𝑍𝑍 = 36] 1
35 0 1 ? 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 ?
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?
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Estimating Causal Effects with Regression Modeling

 If our assumptions hold, then:
Ε 𝑌𝑌 1 𝑋𝑋 = 0,𝑍𝑍 = 𝑧𝑧 = Ε[𝑌𝑌|𝑋𝑋 = 0,𝑍𝑍 = 𝑧𝑧]

 We can impute the missing potential 
outcomes:

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 �Ε[𝑌𝑌|𝑋𝑋 = 1,𝑍𝑍 = 36] 1
35 0 1 �Ε[𝑌𝑌|𝑋𝑋 = 1,𝑍𝑍 = 35] 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 ?
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?
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Estimating Causal Effects with Regression Modeling

 If our assumptions hold, then:
Ε 𝑌𝑌 1 𝑋𝑋 = 0,𝑍𝑍 = 𝑧𝑧 = Ε[𝑌𝑌|𝑋𝑋 = 0,𝑍𝑍 = 𝑧𝑧]

 We can impute the missing potential 
outcomes

 Can also regress on more than one 𝑍𝑍
variable, to better justify 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋|𝑍𝑍1, … ,𝑍𝑍𝑝𝑝

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 �Ε[𝑌𝑌|𝑋𝑋 = 1,𝑍𝑍 = 36] 1
35 0 1 �Ε[𝑌𝑌|𝑋𝑋 = 1,𝑍𝑍 = 35] 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 ?
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?
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Causal regression modeling of phototherapy and jaundice

 Vittinghoff et al (2012) performed logistic regression modeling on the jaundice data 
using the following predictor covariates: treatment (phototherapy vs. watchful 
waiting), chromosomal sex, gestational age (discretized into 6 categories), birth 
weight (numeric, linear term), interaction between gestational age and birth 
weight, bilirubin level at time of treatment assignment (relative to a guideline 
threshold for phototherapy treatment), age at time of treatment assignment 
(discretized into days), and hospital (treated as a clustering variable)

 Results: 
– �P 𝑌𝑌 1 = 1 = 0.16%; 
– �P 𝑌𝑌 1 = 0 = 0.96%; 
– Estimated risk difference = −0.79%

 Compare: unadjusted analysis risk difference: -0.4%; risk difference stratifying on 
gestational age ≤ 37 weeks: -0.5%
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Analysis 4: Matching (briefly)

 If a given observation has no exact 
counterparts (with opposite treatment), 
maybe we can use an approximate 
counterpart instead:

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 ? 1
35 0 1 ? 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 ?
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?
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Analysis 4: Matching (briefly)

 If a given observation has no exact 
counterparts (with opposite treatment), 
maybe we can use an approximate 
counterpart instead.

 Maybe we just pick one of the closest 
matches and call it close enough?

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 ? 1
35 0 1 ? 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 ?
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?



35Introduction to Causal Inference

Analysis 4: Matching (briefly)

 If a given observation has no exact 
counterparts (with opposite treatment), 
maybe we can use an approximate 
counterpart instead.

 Maybe we just pick one of the closest 
matches and call it close enough?

 Maybe we pick one “matching” counterpart 
for every observation?

 We might need to discard some observations 
without any close matches.

 There are many different methods for 
matching.

𝒁𝒁 𝑿𝑿 𝒀𝒀 𝒀𝒀 𝟏𝟏 𝒀𝒀 𝟎𝟎

36 0 1 ? 1
35 0 1 ? 1
38 0 0 ? 0
40 0 1 ? 1
39 0 1 ? 1
35 1 0 0 ?
37 1 1 1 0
36 1 1 1 ?
40 1 0 0 ?
38 1 1 1 ?
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Analysis 5: Propensity scores (also briefly)

 If we need several 𝑍𝑍s to justify the conditional independence assumption, 
stratification, regression, and matching can become very complicated.

 Maybe we can combine those 𝑍𝑍s into a single variable that summarizes them and 
still provides conditional independence.

 If 𝑋𝑋 is binary and the conditional independence assumption holds for 𝑍𝑍1, … ,𝑍𝑍𝑝𝑝, then 
it also holds for 𝜋𝜋 𝑧𝑧1, … , 𝑧𝑧𝑝𝑝 = 𝑃𝑃(𝑋𝑋 = 1|𝑍𝑍1 = 𝑧𝑧1, … ,𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑝𝑝); that is, 𝑌𝑌 𝑥𝑥 ⫫ 𝑋𝑋 | 𝜋𝜋 𝑍𝑍

 We can estimate �𝜋𝜋 𝑧𝑧1, … , 𝑧𝑧𝑝𝑝 = �P 𝑋𝑋 = 1 𝑍𝑍1 = 𝑧𝑧1, … ,𝑍𝑍𝑝𝑝 = 𝑧𝑧𝑝𝑝 and use it with 
univariate stratification, regression, or matching.

 More on this topic in the third seminar in this series!
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How do we know if we have the right covariates?

 The conditional independence assumption is crucial for all the methods we 
discussed today. How can we tell if it is plausible? Hard to even think about.

 Maybe we can make smaller, easier-to-understand, possibly even testable, 
assumptions, from which we could mathematically deduce whether a given set of 
covariates provides conditional independence.

 Next session: we draw flow-chart diagrams (called directed acyclic graphs, “DAGs”) 
to represent our assumptions about the data-generating process, and analyze these 
diagrams to determine which sets of covariates would produce conditional 
independence, given our assumptions.
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Other causal inference topics to explore

 We haven’t discussed how to compute standard errors or confidence intervals for 
our causal effect estimates.
– There are various methods, but when in doubt, try the bootstrap: often 

conceptually simple, although computationally time-consuming.
 There are other common causal inference methods:

– inverse-probability weighting (IPW)
– g-estimation
– Instrumental variables
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Help is available

 My email: demorrison@ucdavis.edu

 CTSC and Cancer Center Biostatistics Office Hours
– Every Tuesday from 12 – 2:00 currently via WebEx
– 1st & 3rd Wednesday from 1:00 – 2:00 currently via WebEx
– Sign-up through the CTSC Biostatistics Website

 EHS Biostatistics Office Hours
– Upon request

 Request Biostatistics Consultations
– CTSC 
– MIND IDDRC
– Cancer Center Shared Resource
– EHS Center
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Thanks for attending!
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