Design of Phase I and II Clinical Trials Susan Stewart Division of Biostatics

UCDAVIS Clinical and Translational HEALTH Science Center

Topics

Phase I

- Objectives
- Types
 - Rule-based
 - Model-based
 - Model–assisted
- Phase II
 - Objectives
 - Types
 - Multi-stage
 - Randomized
 - Crossover

Phase I clinical trials

- Phase I (NIH definition): Tests a new biomedical intervention in a small group of people (e.g. 20-80) for the first time to determine efficacy and evaluate safety (e.g., determine a safe dosage range and identify side effects).
 - Healthy volunteers or patients who have failed other treatments
 - Determine maximum tolerated dose (MTD)
 - Assess pharmacokinetics (PK, what the body does to a drug) & pharmacodynamics (PD, what a drug does to the body)

Cancer clinical trials design

- Most cancers are life-threatening
- Most anticancer drugs are cytotoxic with a narrow therapeutic window
 - Low doses: ineffective, but toxic
 - Higher doses: effective, but even more toxic
- Phase I and II studies designed to
 - Minimize the number of people exposed to toxic, ineffective treatments
 - Select efficacious treatments with an acceptable safety profile efficiently

Phase I cancer trials

- Participants are usually patients who have exhausted their treatment options
- Goal is to determine the maximum tolerated dose (MTD)
- Doses above the MTD have unacceptable levels of dose-limiting toxicity (DLT)

General considerations

- Starting dose may be based on animal studies
- Participants are usually
 - Critically ill
 - From a small pool of available patients
 - Heterogeneous, e.g., with different tumor types
- Phase I cancer trials
 - Are a screening process to find potentially effective drugs with an acceptable safety profile
 - Determine the MTD with a minimal number of patients in a minimal amount of time
 - Establish the MTD from below (due to the extreme cytotoxicity of the drugs)

Types of Phase I designs

- Rule-based: Assign patients to dose levels according to pre-specified rules based on observations of events (e.g., DLT) from the clinical data
- Model-based: Assign patients to dose levels based on estimation of the target toxicity level using a model of the dose-toxicity relationship
- Model-assisted: Use a model for efficient decision-making, but specify dose escalation & de-escalation rules before trial starts

Le Tourneau et al. J Natl Cancer Inst 2009; 101:708-20 Zhou et al. Clin Cancer Res 2018; 24(18):4357-4364

Rule-based designs

- No prior assumption of dose-toxicity curve
- Up-and-down designs
 - Escalate or de-escalate dose with diminishing fractions of preceding dose depending on presence or absence of severe toxicity in previous dose cohort
 - Simple up-and-down design converges to dose with 50% probability of severe toxicity
 - Not used much because they risk exposing patients to unacceptable levels of toxicity

Traditional 3+3 design

- Most common design for phase I cancer trials
- Only assumption: toxicity increases with dose
- Rules
 - Start with a cohort of 3 patients at a dose considered safe based on animal studies
 - If none experiences a DLT, treat another 3 patients at the next dose level
 - If one of the first 3 patients experiences a DLT, treat another 3 patients at the same dose level
 - Dose escalation continues until 2 of 3-6 patients experiences a DLT
- Recommended phase II dose is the dose below this toxic dose level

Example: ASP3026 in patients with advanced solid tumors

- Oral anaplastic lymphoma kinase (ALK) inhibitor
- First-in-human
- Open-label
- Multi-center
- Dose escalation
- Dose expansion
- Objectives: Determine
 - Primary: Safety & tolerability (MTD)
 - Secondary: Pharmacokinetics & antitumor effects

Li et al. J Hematol Oncol 2016 9(1):23

Dose Escalation & Expansion

- > 28-day treatment cycles, continuous dosing
- First patient in each dose cohort evaluated for DLTs on cycle 1, day 4. If no DLTs, rest of cohort enrolled
- 8 dose levels: 25, 50, 75, 125, 200, 325, 525*, 800 mg
- Expansion of higher dose cohorts allowed to include crizotinib-refractory ALK-positive patients (target population)
- Dose expansion at MTD: crizotinib-refractory ALK-positive patients

J Hematol Oncol 2016 9(1):23

Traditional 3+3 design

Advantages

- Simple and safe
- Provides info on inter-patient PK variability
- Disadvantages
 - Too many escalation steps
 - Few patients get therapeutic doses

Accelerated titration design

- Cohorts of one new patient per dose level start at the lowest dose level
- Intra-patient dose escalation is allowed
- Reverts to 3+3 design if one DLT or 2 moderate toxicities are observed
- Advantage: more patients treated at therapeutic doses
- Disadvantage: intra-patient dose escalation may mask cumulative effects of treatments

Pharmacologically guided dose escalation

- Assumes DLTs can be predicted by plasma drug concentrations based on animal data
- Not widely used

Summary of rule-based designs

- Easy to implement, but
- Inefficient in establishing MTD
- Only use information from last dose
- Are widely used

Model-based designs

- Continual reassessment method (CRM)
 - First Bayesian model-based method
 - Requires initial estimate of the slope of the dosetoxicity curve
 - This estimate is adjusted based on observed data
 - Estimated probability of DLT is updated for each patient

Model-based designs

- Escalation with overdose control (EWOC)
 - Modification of CRM
 - Probability of exceeding MTD assessed after each patient
 - Stop dose escalation if probability of exceeding MTD gets too high
- Bayesian logistic regression (BLRM)
 - Modification of CRM
 - "Optimal" dose has highest posterior probability of being within the proper dosing interval, i.e., with probability of DLT within specified limits
 - Has overdose control similar to EWOC

Summary of model-based designs

- Use all data accumulated during trial
- Efficient, but
- Difficult to implement
- May fail to reach recommended phase II dose if initial estimate of dose-toxicity curve slope is wrong

Graphical depiction of dose escalation methods for phase I cancer clinical trials.

720

JNCI

Model-assisted designs

- Modified toxicity probability interval (mTPI)
 - Specifies 3 intervals: proper dosing interval, underdosing interval, overdosing interval
 - Escalate, de-escalate or stay at same dose based on posterior distribution of the DLT rate in the intervals at current dose
- Keyboard design
 - Similar to mTPI, but has several intervals of equal length (keys)
- Bayesian optimal interval (BOIN)
 - Compare observed DLT rate with pre-determined dose escalation & de-escalation boundaries, which are derived from pre-specified toxicity probability thresholds

Decision of dose escalation and de-escalation under the CRM/EWOC/BLRM, mTPI, BOIN, and keyboard designs.

Heng Zhou et al. Clin Cancer Res 2018;24:4357-4364

F

Study designs: https://biostatistics.mdanderson.org/SoftwareDownload/Softwa reOnline

Biostatistics Softw	vare Downloada 🗙 🚯 Bayesian	n Optimal Interval (BOIN) 🗙	+																	— t	j ×
\leftrightarrow \Rightarrow C \triangle	a mdabiostat.shinyapps.io	/BOIN/																	☆	ŭ	•
Trial Setting	Simulation	Trial Protocol	Animation	Select MTD F	eference																•
		How to Use	e the BOIN App	Design Flow Chart	Decision Ta	able															
Number of	Doses	Starting dose level:	0																		
5		1		Copy CSV Excel	Print																1
					1 (2	∲ 3 (4	5	6	÷ 7 4	8	9	♦ 10	♦ 11	≑ 12	♦ 13	† 14	♦ 15	16	•
Target Toxicit	Target Probab	ility	8	Number of patients treated	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
0.1	φ.			Escalate if # of DLT <=	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
Use the de	fault alternatives to minimize o	lecision error (recommended	J).	Deescalate if # of DLT >=	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	
				Eliminate if # of DLT >=	NA	NA	2	2	2	2	2	3	3	3	3	3	3	4	4	4	- 1
Cohort size: 2 Stop trial if n 16 Perform ac No 0 1 Eliminate dose Use the defau	Sample Siz umber of patients assigned to celerated titration: Yes Overdose Cor $e j ext{ if } Pr (p_j > \phi \mid data) > p_E$ ult cutoff (recommended) p_E	e Number of cohort: 16 to single dose reaches:	6																		
0.95																					
Check the	box to impose a more stringen	t safety stopping rule:																			
	Get Flow Chart and Deci	sion Table																			

Summary of model-assisted designs

- Combine superior performance of modelbased designs with simplicity of rule-based designs
- BOIN and keyboard have similar performance and are easy to implement
- BOIN may be particularly appealing because it uses the observed DLT rate to determine dose escalation & de-escalation

Phase II clinical trials

- Phase II (NIH definition): Study the biomedical or behavioral intervention in a larger group of people (several hundred) to determine efficacy and further evaluate safety.
 - Is there any biological activity?
 - May or may not have concurrent controls
 - May be shorter term with different outcome and more exclusion criteria than phase III trials
 - Phase IIA-evaluate dosing; phase IIB -determine effectiveness

Phase II: Multi-stage designs

Purpose

- Identify drugs that are promising for further testing in a Phase III trial
- Preliminary efficacy assessment
- Avoid exposing patients to sub-therapeutic dose levels
- Terminate the study if the treatment is ineffective

Single arm trials

- Optimal two-stage designs
 - Permit early stopping if there is a moderately long sequence of initial failures
 - Enroll n₁ patients in stage 1
 - If $\leq r_1$ responses, stop the trial
 - Otherwise, enroll n₂ more patients
 - Decide whether or not treatment is promising based on the n₁+n₂ patients

Two-stage designs

- Null hypothesis: probability of response is unacceptably low
- Alternative hypothesis: probability of response is sufficiently high to warrant further study
- Simon's optimal two-stage design minimizes the expected sample size under the null hypothesis for the given error constraints
- Simon's minimax design minimizes the maximum sample size for the given error constraints

Example: Intravenous aflibercept in patients with ovarian cancer

- Drug is a vascular endothelial growth factor (VEGF) inhibitor
- 2 dose levels tested (2 mg/kg and 4 mg/kg), based on previous phase 1 & 2 studies
- Patients with advanced platinum-resistant ovarian cancer
- Simon minimax 2-stage design
- Primary outcome: objective response rate (ORR)
- Null hypothesis: $ORR \le 5\%$
- Alternative hypothesis: $ORR \ge 15\%$
- Tested at the 0.025 level, 1-sided

Tew et al. Cancer 2014; 120:335-43

2-stage design

- Plan: enroll 42 patients in each group in stage 1
- If at least 3 responders in stage 1 in a group, go on to enroll 25 patients in stage 2
- Declare drug suitable for future study if at least 8 responders total (stages 1 & 2) in a group
- Allowed to enroll additional patients beyond the 2-stage design to reach a planned total sample size of 200

Sample size calculation

http://cancer.unc.edu/biostatistics/program/ivanova/SimonsTw oStageDesign.aspx

Simon's Two-Stage design 🗙 🕂

← → C ① Not secure | cancer.unc.edu/biostatistics/program/ivanova/SimonsTwoStageDesign.aspx

* 5 . :

UNC Lineberger Comprehensive Cancer Center

۵

X

Anastasia Ivanova, Ph.D, University of North Carolina at Chapel Hill Continuous monitoring for toxicity Simon's two-stage design Fleming's two-stage design Simon's like design with relaxed futility stopping Two-stage design for ordinal outcomes The Rapid Enrollment Design (RED) for Phase I trials Other programs Simon's Two-Stage design This program generates Simon's optimal two-stage designs (Simon, 1989) and admissible designs from Jung et al. (2004) for Phase II single arm clinical trials. 1. Simon R (1989). Controlled Clinical Trials 10: 1-10. Click here to download Simon's (1989) article. 2. Jung SH, Lee TY, Kim KM, George S (2004). Admissible two-stage designs for phase II cancer clinical trials, Statistics in Medicine 23: 561-569. 0.025 Type I error rate, α (one-sided): Power: 8.0 Response probability of poor drug, pot 0.05 Response probability of good drug, p1: 0.15 Calculate Probability of early stopping Interval for w Comment n 14 12 Type 1 Error Power EN_o 67 42 7 0.0180 0.8008 50.8 0.6490 [0.8344,1] Minimax 2 68 29 0.0188 45.7 0.5708 [0.6871,0.8343] 0.8002 0.0198 0.8014 43.5 0.6061 [0.5303,0.687] 69 0.0238 0.8009 39.0 0.6794 [0,0.5302] Optimal Calculated in 4 milliseconds **n** is the total number of subjects n1 is the number of subjects accrued during stage 1 r1, if r1 or fewer responses are observed during stage 1, the trial is stopped early for futility r₂, if r₂ or fewer responses are observed by the end of stage two, then no further investigation of the drug is warranted **EN**₀ is the expected sample size for the trial when response rate is p_0

Interval for w is the set of values w such that the design minimizes $w * n + (1 - w) * EN_0$

Recommended write up for a protocol

Simon's two-stage design (Simon, 1989) will be used. The null hypothesis that the true response rate is [p_0] will be tested against a one-sided alternative. In the first stage, [n_1] patients will be accrued. If there are [r_1] or fewer responses in these [n_1] patients, the study will be stopped. Otherwise, [$n - n_1$] additional patients will be accrued for a total of [n]. The null hypothesis will be rejected if [$r_2 + 1$] or more responses are observed in [n] patients. This design yields a type I error rate of [Type I error rate] and power of [power] when the true response rate is [p_1].

The development of this software was supported by funds from the National Institutes of Health [RO1 CA120082-01A1]. For comments, questions and suggestions e-mail to Anastasia Ivanova at aivanova@bios.unc.edu

UNC Lineberger Comprehensive Cancer Center Campus Box 7295, Chapel Hill, NC 27599 Appointments: 1-866-680-1856 Copyright A9 1999-2012. All rights reserved. UNC Home [UNC Health Care [UNC School of Medicine

Multiple stage designs

- Can extend to 3 (or even 4 stages)
- May require at least one response at first stage to go on to the second stage
- Considerations for any multi-stage design
 - How long will it take to determine whether there are enough responses to proceed to the next stage?
 - Will we stop the study or keep on enrolling while waiting for the results from the previous stage?

Randomized phase II designs

- May randomize patients to different drugs or dose levels of the same drug
- Can estimate differences between treatments
- Can pick the treatment with best response
- Randomization produces balanced groups

Example: Phase II trial—Oncken (2006)

- <u>Background</u>: Evaluated 4 varenicline dose regimens for promoting smoking cessation.
- Methods: Multicenter, double-blind, placebocontrolled. Randomized healthy smokers aged 18-65 to varenicline tartrate or placebo twice daily for 12 weeks
 - $\circ~0.5$ mg non-titrated (n=129); 0.5 mg titrated (n=130)
 - 1.0 mg non-titrated (n=129); 1.0 mg titrated (n=130)
 - placebo (n=129)

with 40-week follow-up to assess long-term efficacy. Primary efficacy outcomes: carbon-monoxide confirmed 4-week continuous quit rates; continuous abstinence

Arch Intern Med. 2006 166(15):1571-7

Results

- Weeks 9–12 continuous quit rates greater in 1.0 mg group and 0.5 mg group than placebo
- Weeks 9-52 abstinence rates greater in 1.0 mg group and 0.5 mg group than placebo
- Generally well tolerated
 - Nausea in 16%-42% of varenicline treated subjects
 - Less nausea with titrated dosing

From: Efficacy and Safety of the Novel Selective Nicotinic Acetylcholine Receptor Partial Agonist, Varenicline, for Smoking Cessation

Arch Intern Med. 2006;166(15):1571-1577. doi:10.1001/archinte.166.15.1571

Figure Legend:

Continuous quit rates. P<.001 for each treatment group vs placebo. BID indicates twice daily. The odds ratios (ORs) and 95% confidence intervals (CIs) for the weeks 4 through 7 evaluation were 4.96 (95% CI, 2.66-9.22) for the 0.5-mg group and 5.86 (95% CI, 3.16-10.90) for the 1.0-mg group; for the weeks 9 through 12 evaluation, 6.32 (95% CI, 3.47-11.50) and 8.07 (95% CI, 4.42-14.70), respectively.

Conclusion

Varenicline tartrate, 0.5 mg and 1.0 mg twice daily, is efficacious for smoking cessation.

Crossover Trial

- Definition (Chow & Liu): Modified randomized block design in which each block receives more than one treatment at different dosing periods.
- Simplest case: each participant is randomized to receive 2 treatments, A and B, in the order AB or BA.
- Between the 2 treatments, there is a washout period.

Design and Analysis of Clinical Trials (3rd Ed.) Chow & Liu, Wiley, 2014

Crossover Trial

- Advantages
 - Each participant serves as his or her own control
 - Removes inter-patient variability from the comparison of treatments
 - Therefore, requires a smaller sample size than a parallel groups design

Disadvantage

- Have to worry about carryover between treatments
 - Carryover effects may not be equal
- Vulnerable to dropouts

Higher Order Crossover Designs

- Definition (Chow & Liu):
 - Number of periods > number of treatments
 - Two-sequence dual (extra period) design: ABB, BAA
 - Doubled (replicated) design: AABB, BBAA
 - Number of sequences > number of treatments
 - Balaam's design: AA, BB, AB, BA
 - Both
 - Four-sequence design: AABB, BBAA, ABBA, BAAB
- These designs allow estimation of carryover effects and intra-patient variability

Crossover Trial

- Example: Randomized double blind trial of dark chocolate/cocoa snack vs. control snack in overweight people aged 40-64 (n=30)
- 2 periods, 4 weeks each, with 2-week washout period
- Outcomes: large & small blood vessel dilatation, peripheral blood flow, arterial stiffness
- Comparison: Active vs. control & baseline

West et al., British Journal of Nutrition 2014; 111:653-61

Data Analysis

- Initial model
 - Fixed effects: treatment (baseline, active, control), period, treatment X period interaction
 - Random effect: participant
- Treatment X period was not statistically significant
- Some models included treatment X sex interaction
- Tukey's post-hoc tests for multiple comparisons

Table 4: Results

	Pre-treatment‡		Contro	ol§	Active§		
	Mean	SE	Mean	SE	Mean	SE	
Ultrasound measurements							
Basal arterial diameter (mm)	4.20***	0.17	4.21***	0.17	4.47	0.17	
Peak arterial diameter (mm)	4-39***	0.18	4.42***	0-18	4.65	0.18	
FMD (% change)	4-73	0.41	5.12	0-44	4.25	0.44	
Doppler-derived measures							
Basal flow volume (ml/s)	166**	18	176*	18	214	18	
Peak flow volume (ml/s)¶	1059*	76	1032*	77	1153	77	
Reactive hyperaemia (% change) ++	612*	37	567	39	503	39	
EndoPAT variables							
RHI	2-26	0.14	2.19	0.12	2.20	0.11	
fRHI	0-60	0.09	0.55	0.08	0.49	0.07	
Al‡‡	9-92**	3.9	5.90**	3-6	-0.57	3-5	
AI at 75 bpm§§	2.75**	3.9	- 2.72**	3.6	- 8.53	3.5	
Anthropometrics							
Weight (kg)	80-9	2.3	80.7	2.3	81.3	2.3	
BMI (kg/m ²)	27-4	0.5	27.5	0.5	27.7	0.5	
Waist circumference (cm)	94-6	1.2	94.7	1.2	95.5	1.2	
Hip circumference (cm)	106-8	0.9	106-9	0.9	106-9	0.9	
Waist:hip ratio	0-89	0.01	0.89	0-01	0.89	0.01	

Mean values were significantly different from those of the active group: * P \leq 0.05, ** P \leq 0.01, *** P \leq 0.001.

Fig. 1 Sex difference in vascular response to the cocoa+dark chocolate treatment. Women () exhibited significant reductions in the augmentation index, whereas men () did not (sex \times treatment interaction, P= 0.01).

2-Period 2-Treatment Crossover Trial: Outcome by Sequence & Period

Sequence	Period 1	Period 2
AB	Y _A	Y _B
BA	Y _B	Y _A

Simplifying Assumptions

- $\bullet H_0: \mu_B = \mu_{A;} H_a: \mu_B \neq \mu_A$
- Specify $\mu_B \mu_A = \delta$ (difference in treatment effects)
- No sequence or period effect: paired t-test comparing treatment B with treatment A over the entire sample
 - Specify $SD = \sqrt{2}$ *(within-person SD)= $SD(Y_B Y_A)$
 - Or specify SD(Y_B), SD(Y_A), and corr(Y_A, Y_B)

https://stattools.crab.org

One Arm Normal

One Arm Normal is a program to calculate either estimates of sample size or power for one sample normal problem.

User Input	Program Output
------------	----------------

Select Calculation and Test Type

Sample Size	© 1 Sided
O Power	2 Sided

Select Hypothesis Test Parameters

Null Mean	Alternative Mean	Standard Deviation	Alpha
0	1	1.414	0.05

Power	Sample Size
0.9	22

Within-person SD=1

Help Document

Crossover Trial vs. Parallel Group Sample Size

For a given

- difference in treatment mean responses $\mu_B \mu_A = \delta$
- treatment response variance Var(Y)
 - (between-person plus within-person)
- levels of type I & II error

$$\frac{n \operatorname{crossover}}{n \operatorname{parallel}} = 0.5^* [1 \operatorname{corr}(Y_B, Y_A)]$$

- Even if there is no within-person correlation, the crossover trial requires half the sample size
- The greater the correlation, the greater the reduction in sample size

Selecting a Design

- Need to consider (Chow & Liu)
 - Number of treatments to be compared
 - Characteristics of the treatment
 - Study objectives
 - Availability of participants
 - Inter- and intra-person variability
 - Duration of the study
 - Dropout rates

Considerations

- If intra-patient variability ≥inter-patient variability, parallel groups preferred to crossover
- If inter-patient variability is large and the number of treatments is small, consider a cross-over design
 - However, disease state must be stable