

Introduction to Survival Analysis

Sandra Taylor, Ph.D. April 11 & 18, 2018

Seminar Objectives

- Recognize survival data
- Understand the unique aspects of survival data
- Be able to generate and interpret survival curves
- Learn how to compare two or more survival curves

What is survival data? Classically, how long a subject survived

National Vital Statistics Reports, Vol. 53, No. 6, November 10, 2004 5

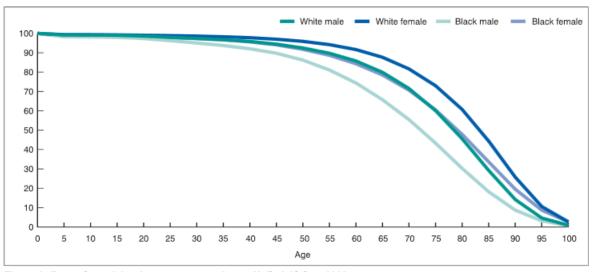


Figure 2. Percent surviving by age, race, and sex: United States, 2002

By obtaining the age at which every person died in the US, we can construct survival curves like these that show the probability that a person will survive until a certain age

Time-to-Event Data

Bad Events

- Death
- Recurrence of cancer
- Disease progression
- Failure of equipment

Good Events

- Confirmed pregnancy
- Return to full function
- Completion of training
- Extubation

How does time-to-event data differ from other data types?

Consists of 2 pieces of information

- Time of observation (i.e., how long did you observe the subject)
- Outcome at the end of the observation period
- Differs from other data types in having 2 components
 - Consider cholesterol levels
 - Consider presence of hypertension

What are challenges to analyzing time-to-event data?

- Different observation lengths among subjects
- Failure to observe the event of interest

Illustration

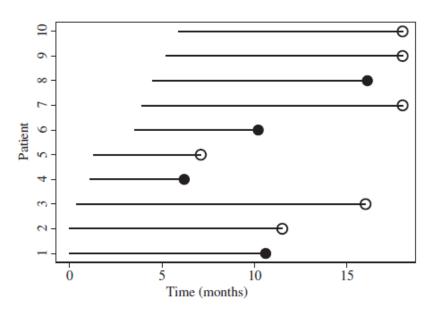


FIGURE 26.1 Diagram of patient accrual and follow-up from the data from Table 26.1. *Solid circles*, uncensored observation; *open circles*, censored observation.

- Consider a cancer survival study
- 18-month duration
- Accrue patients for 6 months
- Follow patients until 18 month end of study
- Duration of follow up varies from 12 to 18 months depending on recruitment
- Event (death or relapse) not observed in all patients

Censoring

- The survival time for a subject is "censored" if the event of interest is not observed.
- Right censoring event occurs after a specified time
- Left censoring event occurred before a specified time
- Interval censoring event known only to have occurred between to time points

Causes of Right Censoring

Administrative

study designed to stop at a certain time

- Withdrawal of patient from study
- Loss to follow up

All handled the same way analytically

Addressing Varying Follow Up

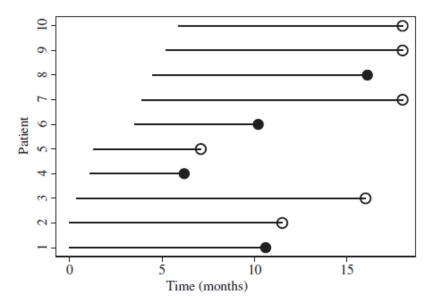
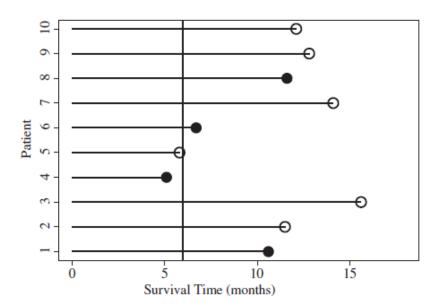
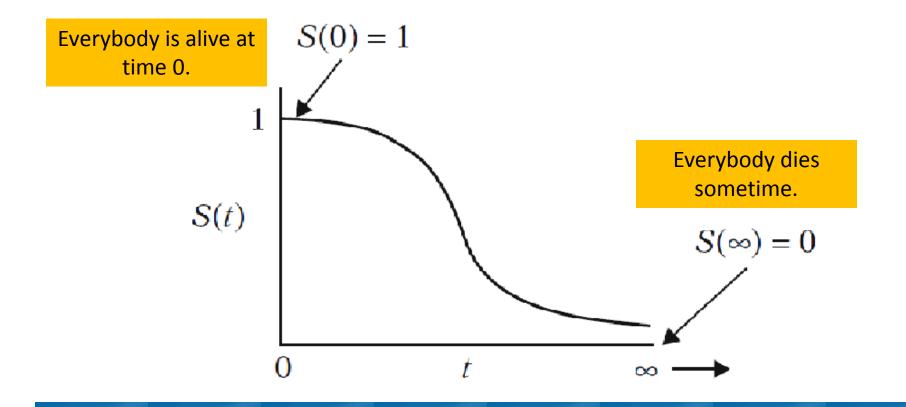


FIGURE 26.1 Diagram of patient accrual and follow-up from the data from Table 26.1. *Solid circles*, uncensored observation; *open circles*, censored observation.




FIGURE 26.2 Diagram of the survival times for Table 26.1.

Shift times so every subject starts at time 0

"Survival" time then equals time on study

Survival Function

- Survival function is the "summary statistic" for time-toevent data
- Summarizes probability of the event occurring over time
- S(t) = probability of individual surviving until time t

Estimating the Survival Function

 Kaplan-Meier Method (aka Product-Limit Estimator) is most common method for estimating survival function

$$\widehat{S}(t) = \prod_{t_i \le t} (1 - f_i / r_i)$$

 t_i = times of events or censoring ordered from first to last f_i = the number of events that occur at time t_i r_i = the number of individuals at risk at time t_i

Construction of KM Curve

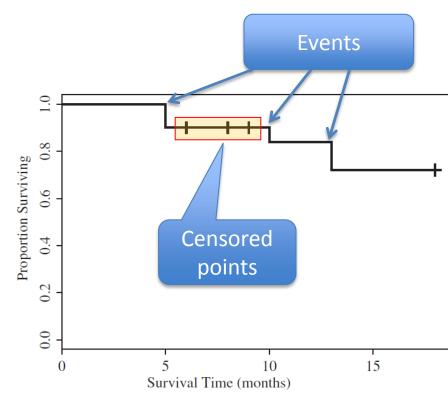

Time <i>, t_i</i> (Month)	No. at Risk, <i>r_i</i>	No. of Events, <i>f</i> _i	Product-Limit Estimator	Cumulative No. Censored, <i>m_c</i> (<i>t_i</i>)	Cumulative No. of Events, m _e (t _i)
0	20	0	1.00	0	0
5	20	2	1 - 2/20 = 0.90	0	2
6	18	0	$(1 - 0/18) \times 0.90 = 0.90$	0	2
10	15	1	$(1 - 1/15) \times 0.90 = 0.84$	3	3
13	14	2	$(1 - 2/14) \times 0.84 = 0.72$	3	5

 TABLE 26.2
 Construction of a Product-Limit Estimator

- Start with 20 at time 0. S(0) = 1
- 2 events at 5 months; 20 at risk (f_i=2, r_i= 20)
- No events or censoring at 6 months so no change
- 1 event at 10 months, 3 subjects censored between 6 and 10 months (f_i = 1, r_i = 15 due to 2 events and 3 censored)
- 2 events at 13 months (f_i = 2, r_i = 14 due to 3 events and 3 censored)

In this way can calculate survival probabilities over the time period of observation.

Visualizing the Survival Curve

Month	S(t) Estimate
0	1.00
5	0.90
6	0.90
10	0.84
13	0.72

FIGURE 26.3 Product-limit survival curve from the data in Table 26.2.

Understanding the Survival Curve

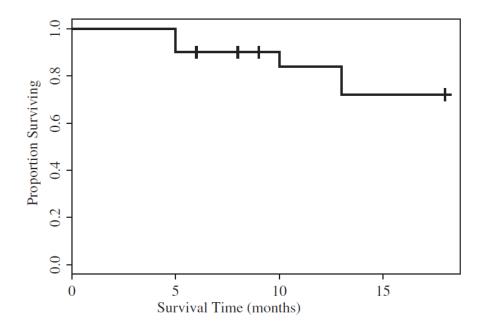
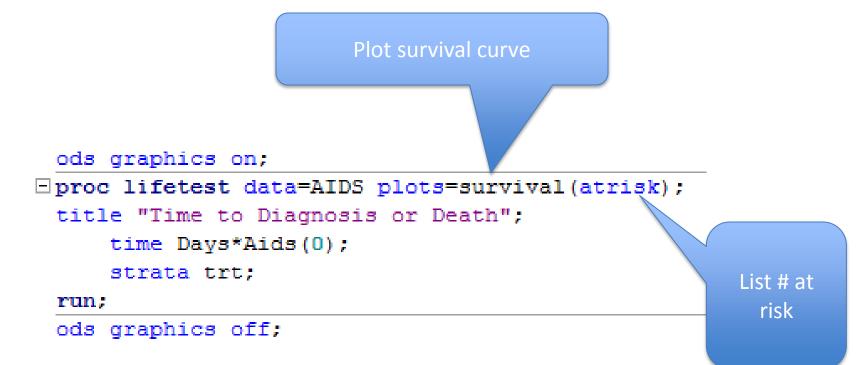


FIGURE 26.3 Product-limit survival curve from the data in Table 26.2.

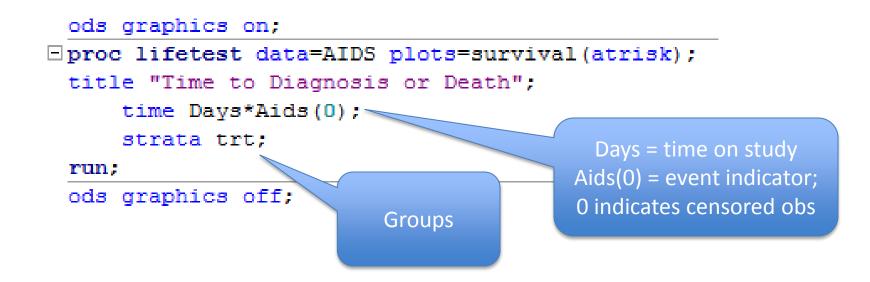
- Estimated probability of surviving to 5 months is 90%
- Estimated probability of surviving to 10 months is 84%
- Estimated probability of surviving to 13 months is 72%

AIDS Clinical Trials Group Study

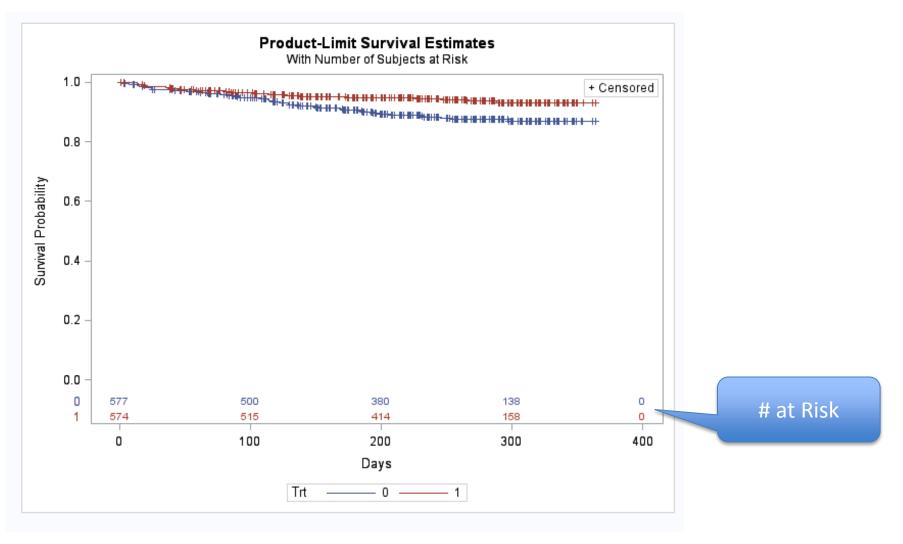

- Double-blind trial that compared a 3 drug regimen to a 2 drug regimen
- Eligible patients CD4 counts < 200 and at least 3 months of prior zidovudine therapy
- N = 1,151 subjects
- Primary outcome: development of AIDS or death

ACTG320 dataset (partial)

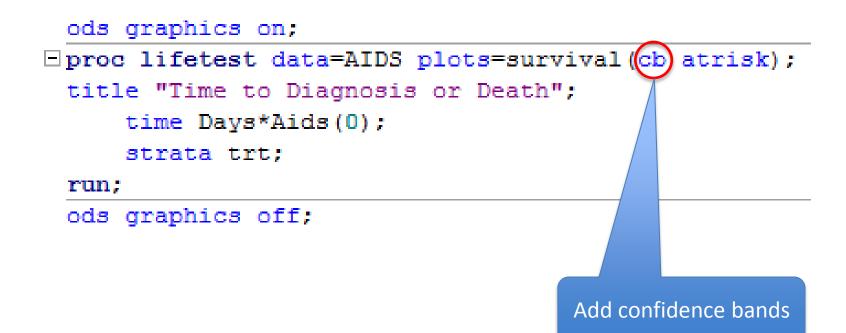
Time to or cens		1 =	Event indica 0 = censor AIDS diagnosi	ed	
ID	Days	AIDS	Trt	Sex	Race
1	189	0	0	1	1
2	287	0	0	2	2
3	242	0	1	1	1
4	199	0	0	1	1
5	286	0	1	1	1
6	285	0	1	1	1
7	270	0	0	1	2
8	285	0	1	1	2
9	276	0	0	1	1
10	306	0	0	1	1
11	334	0	1	2	3
12	285	0	1	2	2
13	265	0	1	1	2
14	206	1	0	2	2
15	305	0	0	1	2
16	110	0	0	2	3
17	298	1	0	1	3

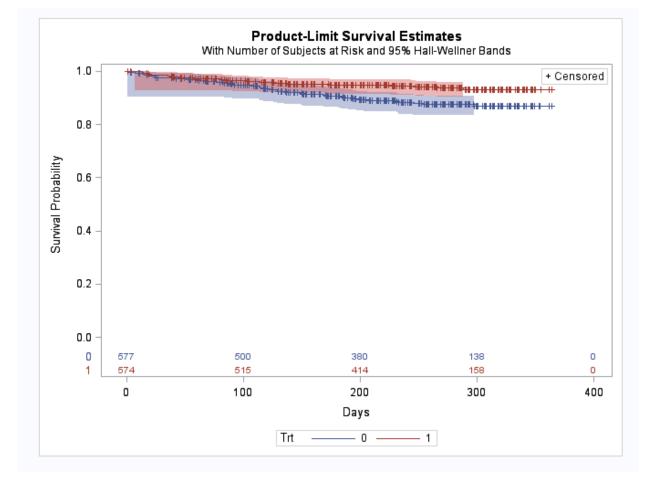

Survival Curves in SAS

- PROC LIFETEST Estimate survival curves using Kaplan-Meier method
- Compare survival curves between groups



Survival Curves in SAS


- PROC LIFETEST Estimate survival curves using Kaplan-Meier method
- Compare survival curves between groups


Survival Curves in SAS

Confidence intervals for Survival Curves in SAS

Confidence intervals for Survival Curves in SAS

Comparing Survival Curves

- H_o: Survival curves do not differ between treatment groups
- Here we have only two groups but method can be extended to more
- Log-rank test is most common test
- Other tests exist differences stem from weights given to different portions of the survival curve

- Determine expected number of events if no difference in survival
 - expected number of events in each group is proportional to number at risk in each group
- Compare observed to expected number of events
- Marked deviation suggests survival curves differ between groups

#1	failures	# in ri	sk set	
$t_{(j)}$	m_{1j}	m_{2j}	n_{1j}	n_{2j}
1	0	2	21	21
2	0	2	21	19
3	0	1	21	17
4	0	2	21	16
5	0	2	21	14
6	3	0	21	12
7	1	0	17	12
8	0	4	16	12
10	1	0	15	8
11	0	2	13	8
12	0	12	12	6
13	1	0	12	4
15	0	1	11	4
16	1	0	11	3
17	0	1	10	3
22	1	1	7	2
23	1	1	6	1

Expected cell counts:

$$e_{1j} = \left(\frac{n_{1j}}{n_{1j} + n_{2j}}\right) \times \left(m_{1j} + m_{2j}\right)$$

$$\uparrow \qquad \uparrow$$
Proportion # of failures over both groups
$$e_{2j} = \left(\frac{n_{2j}}{n_{1j} + n_{2j}}\right) \times \left(m_{1j} + m_{2j}\right)$$

Source: Staub & Gekenidie 2011. Seminar in Statistics: Survival Analysis. Chapter 2 Kaplan-Meier Survival Curves and the Log-Rank Test. March 7, 2011

EXAMPLE

Expanded Table (Remission Data)

		# failures		# in risk set		# expected		Observed-expected	
j	$t_{(j)}$	m_{1j}	m _{2j}	n _{1j}	n _{2j}	$\overline{e_{1j}}$	e _{2j}	$m_{1j} - e_{1j}$	$m_{2j} - e_{2j}$
1	1	0	2	21	21	$(21/42) \times 2$	(21/42)×2	-1.00	1.00
2	2	0	2	21	19	$(21/40) \times 2$	(19/40) × 2	-1.05	1.05
3	3	0	1	21	17	$(21/38) \times 1$	$(17/38) \times 1$	-0.55	0.55
4	4	0	2	21	16	$(21/37) \times 2$	(16/37)×2	-1.14	1.14
5	5	0	2	21	14	$(21/35) \times 2$	(14/35)×2	-1.20	1.20
6	6	3	0	21	12	$(21/33) \times 3$	(12/33)×3	1.09	- 1 .09
7	7	1	0	17	12	$(17/29) \times 1$	(12/29)×1	0.41	-0.41
8	8	0	4	16	12	$(16/28) \times 4$	(12/28)×4	-2.29	2.29
9	10	1	0	15	8	$(15/23) \times 1$	$(8/23) \times 1$	0.35	-0.35
10	11	0	2	13	8	$(13/21) \times 2$	(8/21)×2	-1.24	1.24
11	12	0	2	12	6	$(12/18) \times 2$	(6/18)×2	-1.33	1.33
12	13	1	0	12	4	$(12/16) \times 1$	$(4/16) \times 1$	0.25	-0.25
13	15	0	1	11	4	$(11/15) \times 1$	$(4/15) \times 1$	-0.73	0.73
14	16	1	0	11	3	$(11/14) \times 1$	(3/14)×1	0.21	-0.21
15	17	0	1	10	3	$(10/13) \times 1$	(3/13)×1	-0.77	0.77
16	22	1	1	7	2	$(7/9) \times 2$	(2/9) × 2	-0.56	0.56
17	23	1	1	6	1	$(6/7) \times 2$	$(1/7) \times 2$	-0.71	0.71
Tota	uls	9	21			19.26	(10.74)	-10.26	(+10.26)

- Calculate expected number of events at each time point
- Calculate difference between observed and expected
- Sum differences as measure of how different observed values are from expected *if no difference in survival* Calculate difference between observed and expected

Source: Staub & Gekenidie 2011. Seminar in Statistics: Survival Analysis. Chapter 2 Kaplan-Meier Survival Curves and the Log-Rank Test. March 7, 2011

Sum the differences between observed and expected

$$O_i - E_i = \sum_{j=1}^{\# failure \ times} (m_{ij} - e_{ij})$$

$$O_1 - E_1 = -10.26$$

 $O_2 - E_2 = 10.26$

Create log-rank statistic

Log-rank statistic =

$$\frac{\left(O_2 - E_2\right)^2}{Var\left(O_2 - E_2\right)}$$

Log-rank test has chi-square distribution so can use to test null hypothesis $rac{ig(O_2-E_2ig)^2}{Varig(O_2-E_2ig)}\sim\chi_1^2$

Source: Staub & Gekenidie 2011. Seminar in Statistics: Survival Analysis. Chapter 2 Kaplan-Meier Survival Curves and the Log-Rank Test. March 7, 2011

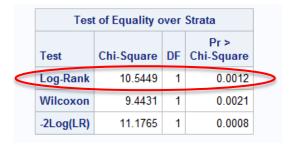
Log-Rank Test in SAS

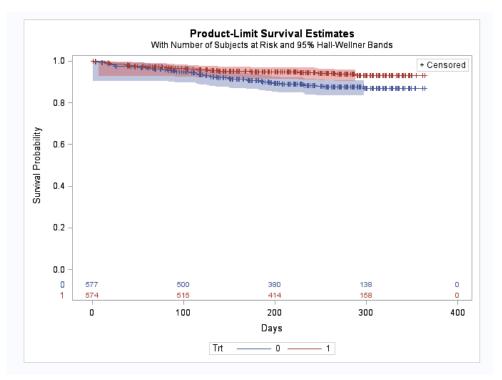
 Automatically generated with previous code due to strata command

```
ods graphics on;

proc lifetest data=AIDS plots=survival(cb atrisk);

title "Time to Diagnosis or Death";


   time Days*Aids(0);


   strata trt;

run;

ods graphics off;
```

Log-Rank Test in SAS

- Survival curves differ significantly between the two treatment groups
- New treatment regimen improved survival

Survival and Failure Estimates

Time to Diagnosis or Death

The LIFETEST Procedure

Stratum 1: Trt = 0

		Pro	duct-Lim	it Survival Estimate	s	
Days		Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.000		1.0000	0	0	0	577
1.000		0.9983	0.00173	0.00173	1	576
1.000	*				1	575
2.000		0.9965	0.00347	0.00245	2	574
3.000	*				2	573
4.000	*		-		2	572
7.000		-	-		3	571
7.000		0.9930	0.00695	0.00346	4	570
9.000		0.9913	0.00870	0.00387	5	569
10.000	*				5	568
11.000	*	-	-		5	567
13.000		0.9896	0.0104	0.00424	6	566
14.000		0.9878	0.0122	0.00458	7	565
15.000		0.9861	0.0139	0.00489	8	564
16.000		0.9843	0.0157	0.00519	9	563
17.000	*	-	-		9	562
18.000		0.9826	0.0174	0.00547	10	561
20.000		0.9808	0.0192	0.00573	11	560
24.000		0.9791	0.0209	0.00598	12	559
25.000		0.9773	0.0227	0.00622	13	558

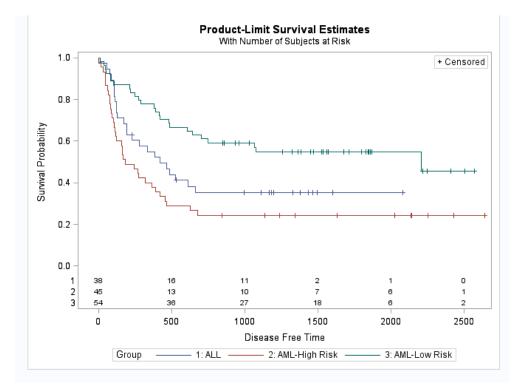
SAS will also provide estimates of survival and failure probabilities at each time point as well as the number of events and number at risk.

Time to Diagnosis or Death

The LIFETEST Procedure

Stratum 2: Trt = 1

Product-Limit Survival Estimates									
Days		Survival	Failure	Survival Standard Error	Number Failed	Number Left			
0.000		1.0000	0	0	0	574			
1.000	*		-		0	573			
3.000	*	-	-		0	572			
7.000		0.9983	0.00175	0.00175	1	571			
13.000		0.9965	0.00350	0.00247	2	570			
14.000					3	569			
14.000		0.9930	0.00699	0.00348	4	568			
17.000		0.9913	0.00874	0.00389	5	567			
17.000	*				5	566			
18.000					6	565			
18.000		0.9878	0.0122	0.00460	7	564			
19.000	*		-		7	563			
20.000		0.9860	0.0140	0.00491	8	562			
25.000		0.9842	0.0158	0.00521	9	561			
35.000		0.9825	0.0175	0.00549	10	560			
38.000	*		-		10	559			
39.000		0.9807	0.0193	0.00575	11	558			
39.000	*				11	557			
39.000	*				11	556			
40.000	*	-			11	555			
44 000	*				44	CC /			

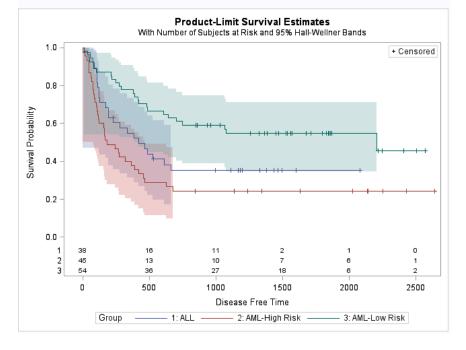

Another Example

- Disease-free survival after bone marrow transplant
 - Time to death or disease progression

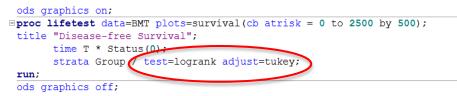
• 3 risk categories

- ALL acute lymphoblastic leukemia
- AML Low Acute myeloctic leukemia
- AML High Acute myeloctic leukemia

Disease-free Survival

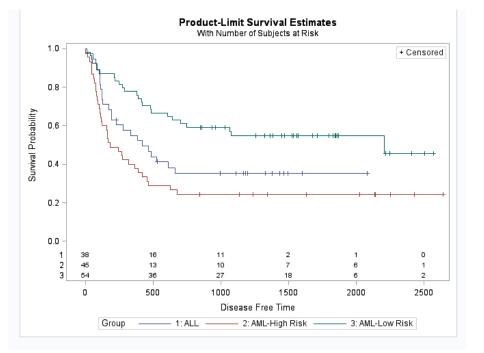


Test	Chi-Square	DF	Pr > Chi-Square
Log-Rank	13.8037	2	0.0010


- AML low risk group has best survival
- AML high risk group has poorest survival
- Log-rank test indicates that at least 2 curves differ significantly
- How to test?

Multiple Comparisons

Adjustment for Multiple Comparisons for the Logrank Test							
Strata Co	mparison		1	o-Values			
Group	Group	Chi-Square	Raw	Tukey-Kramer			
ALL	AML-High Risk	2.6610	0.1028	0.2324			
ALL	AML-Low Risk	5.1400	0.0234	0.0605			
AML-High Risk	AML-Low Risk	13.8011	0.0002	0.0006			



If overall test is significant, follow up with multiple comparisons.

Only do log rank test Conduct multiple comparisons with a Tukey procedure to control the error rate.

Estimates of Survival Quartiles

AML-High Risk

Summary Statistics for Time Variable T

Quartile Estimates						
	Point	95% Confidence Interval				
Percent		Transform	[Lower	Upper)		
75	677.00	LOGLOG	363.00			
50	183.00	LOGLOG	113.00	390.00		
25	84.00	LOGLOG	48.00	115.00		

AML-Low Risk
Summary Statistics for Time Variable T

Quar	rtile Esti	mates	

Qual the Lounateo				
	Point	95% Confidence Interval		
Percent		Transform	[Lower	Upper)
75		LOGLOG		
50	2204.00	LOGLOG	641.00	
25	390.00	LOGLOG	105.00	641.00

- SAS will provide estimates by group of median, 25th and 75th quartiles *if available.*
- Median survival time to which 50% of subjects have survived
- 25th time by which 25% of subjects have experienced the event
- 75th time by which 75% of subjects have experienced the event

- "Survival" analysis methods applicable to variety of "time-to-event" data
- Censoring necessitates special methods
- Kaplan-Meier summarizes survival data
- Log-rank test statistically compares survival between categorical groups
- Next month regression analysis of survival data allowing evaluation of multiple categorical and continuous predictors

Help is Available

CTSC Biostatistics Office Hours

- Every Tuesday from 12 1:30 in Sacramento
- Sign-up through the CTSC Biostatistics Website

EHS Biostatistics Office Hours

– Every Monday from 2-4 in Davis

Request Biostatistics Consultations

- CTSC www.ucdmc.ucdavis.edu/ctsc/
- EHS Center