

Longitudinal Data Analysis

Danielle Harvey, Ph.D. July 12, 2017

This seminar is jointly supported by the following NIH-funded centers:

CLINICAL AND TRANSLATIONAL SCIENCE CENTER UCDAVIS MIND INSTITUTE

UCDAVIS COMPREHENSIVE CANCER CENTER UCDAVIS ENVIRONMENTAL HEALTH SCIENCES CENTER

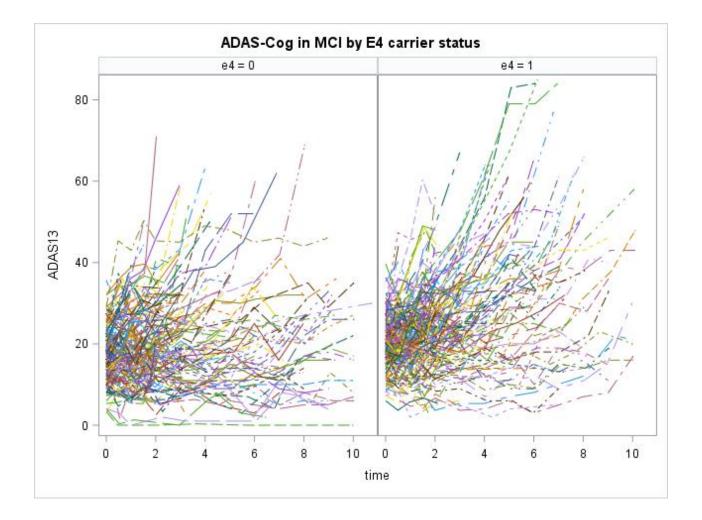
We are video recording this seminar so please hold questions until the end.

Thanks

Seminar Objectives

- Understand what statistical methods to use to analyze repeated measures data
- Be able to conduct simple analyses of repeated measures data using SAS

Background


Prospective Studies

- Follow individuals over time
- Repeat assessments on the same individual
- Questions of interest are often about change over time and variables associated with change
- Observations from the same individual are correlated
- Linear regression and ANOVA not appropriate

Example: Alzheimer's Disease Neuroimaging Initiative (ADNI)

- Longitudinal study of dementia
- Ongoing since 2004
- Enrolled older individuals with normal cognition, mild cognitive impairment (MCI) or mild dementia
- Seen every 6 months for ~ 2 years, then annual follow-ups
- Clinical eval, neuropsych testing, neuroimaging at each visit
- CSF samples annually
- http://adni.loni.usc.edu/

Spaghetti Plots of ADNI data

Standard Methods for Longitudinal Data Analysis

- Repeated Measures ANOVA
 - Extension of ANOVA to correlated data
 - Extension of paired t-test to more than 2 observations per person
 - Continuous outcome with categorical predictors

Mixed Effects Regression

- Extension of linear regression to correlated data
- Continuous outcome with continuous or categorical predictors

Basics: Data Structure

Wide format

- One row per person
- Multiple outcomes are given as separate variables
- Typical format for repeated measures ANOVA

Long format

- One row per observation
- Multiple rows per person
- Need individual ID number to link observations from the same person
- Preferred format for most repeated longitudinal analysis techniques

Basics: Wide Format Data

RID	E4	ADAS13_bl	ADAS13_m06	ADAS13_m12
4	0	21.33	25.33	22
41	1	28.33	25.67	27
54	0	32.33	36.33	39
57	1	19.67	24	41

Basics: Long Format Data

RID	E4	Time	ADAS13
4	0	0	21.33
4	0	0.5	25.33
4	0	1	22
41	1	0	28.33
41	1	0.5	25.67
41	1	1	27
54	0	0	32.33
54	0	0.5	36.33
54	0	1	39
57	1	0	19.67
57	1	0.5	24
57	1	1	41

Basics: Terminology

- Between-person factors/effects
 - Variables that change between people
 - Example: sex, baseline age, E4 carrier status

Within-person factors/effects

- Variables that change within person
- Example: time

 Often interested in both between- and within- person factors as well as interactions between the two

Repeated Measures ANOVA

- Generally assumes balanced design (no missing data)
- Null hypothesis: means are all equal
- Alternative hypothesis: at least two means are different

Assumptions

- Similar to ANOVA (normality of residuals, constant variance across groups)
- Added assumption: sphericity (variances of differences between all possible pairs of within-level conditions are the same)

Repeated Measures ANOVA in SAS

No univariate models for each outcome (meaningless for repeated measures analysis)

Requests tests of sphericity

proc glm data=adni_wide; class e4; model adas_bl--adas_m24 = e4/nouni; repeated time 5 (0 0.5 1 1.5 2)/printe;

run;

5 outcome assessments Levels of time (in years)

SAS Output for Proc GLM Some Initial Checks

The GLM Procedure Repeated Measures Analysis of Variance

Repeated Measures Level Information							
Dependent Variable	Dependent Variable adas13_bl adas13_m06 adas13_m12 adas13_m18 adas13_m24						
Level of time	Level of time 0 0.5 1 1.5 2						

Make sure your levels of time match up with your outcomes

Sphericity Tests							
Variables	DF	Mauchly's Criterion	Chi-Square	Pr > ChiSq			
Transformed Variates	9	0.1076619	602.6936	<.0001			
Orthogonal Components	9	0.6714506	107.71098	<.0001			

Results of sphericity tests: p<0.05 generally indicates violation of sphericity assumption

SAS Output – Within person Multivariate tests

The GLM Procedure Repeated Measures Analysis of Variance

MANOVATes	Time is significant					
Statistic	Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0.74095786	23.51	4	269	<.0001	
Pillai's Trace	0.25904214	23.51	4	269	<.0001	
Hotelling-Lawley Trace	0.34960441	23.51	4	269	<.0001	
Roy's Greatest Root	0.34960441	23.51	4	269	<.0001	

MANOVATes	t Criteria and Exa H = Ty					
Statistic	Value	F Value	Num DF	Den DF	Pr > F	
Wilks' Lambda	0.94617916	3.83	4	269	0.0048	
Pillai's Trace	0.05382084	3.83	4	269	0.0048	Time*E4 is
Hotelling-Lawley Trace	0.05688229	3.83	4	269	0.0048	significant
Roy's Greatest Root	0.05688229	3.83	4	269	0.0048	Significant

SAS output – Between-person effect and Univariate withinperson tests

The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Type III SS	Mean Square	F Value	Pr > F
e4	1	2112.06952	2112.06952	7.70	0.0059
Error	272	74653.38978	274.46099		

E4 is significant

Good idea to compare results from multivariate and univariate tests

The GLM Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

						Adj F	r>F	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	G - G	H-F-L	
time	4	2668.99037	667.24759	42.30	<.0001	<.0001	<.0001	1
time*e4	4	230.34390	57.58598	3.65	0.0058	0.0105	0.0101	
Error(time)	1088	17162.41314	15.77428					

Univariate tests of within person effects (matches output of proc mixed to be shown later)

Adjusted p-values account for violation of sphericity (Huynh-Feldt-Lecoutre (H-F-L) is generally preferred over Greenhouse-Geisser (G-G))

Mixed Effects Regression (Mixed Model): Notation

- Let Y_{ij} = outcome for ith person, jth measurement
- Let Y be a vector of all outcomes for all subjects
- X is a matrix of independent variables (such as E4 carrier or time)
- Z is a matrix associated with random effects

Mixed Model Formulation

• $\mathbf{Y} = \mathbf{X}\beta + \mathbf{Z}\gamma + \varepsilon$

β are the "fixed effect" parameters

- Similar to the coefficients in a regression model
- Coefficients tell us how variables are associated with the outcome
- With longitudinal data, some coefficients (of time and interactions with time) will also tell us how variables are associated with change in the outcome
- γ are the "random effects", γ~N(0,Σ)
- ε are the errors, ε~N(0,R)

• simple example: $R = \sigma^2$

Random Effects

• Why use them?

- Not everybody responds the same way (even people with similar demographic and clinical information respond differently)
- Want to allow for random differences in baseline level and possibly rate of change that remain unexplained by the covariates

Random Effects Cont.

Way to think about them

- Bins with numbers in them
- Every person draws a number from each bin and carries those numbers with them
- Predicted outcome based on "fixed effects" adjusted according to a person's random numbers
- Similar to residuals (ϵ are residuals for each observation, while γ are residuals for person level data)

Random Effects Cont.

 Accounts for correlation in observations

Correlation structures

- Compound symmetry (common withinindividual correlation)
 - Most common structure for repeated measures at the same visit
- Autoregressive (AR)
 - Each assessment most strongly correlated with previous one
- Unstructured (most flexible)

Assumptions of Model

- Linearity
- Homoscedasticity (constant variance)
- Errors are normally distributed
- Random effects are normally distributed
- Typically assume Missing at Random (MAR)
 - Missingness is statistically unrelated to the variable itself
 - May be related to other variables in data set

Determining best covariance structure

- Can compare models fit with different covariance structures
- Compare AIC and pick model with the smallest AIC
- Only valid when maximum likelihood is the method of estimation (in SAS, you must change the method, since the default is something different)
- We'll see more in the example

Interpretation of parameter estimates

Main effects

- Continuous variable: average association of one unit change in the independent variable with the baseline level of the outcome
- Categorical variable: how baseline level of outcome compares to "reference" category
- Time
 - Average annual change in the outcome for "reference individual"

Interactions with time

 How change varies by one unit change in an independent variable

Covariance parameters

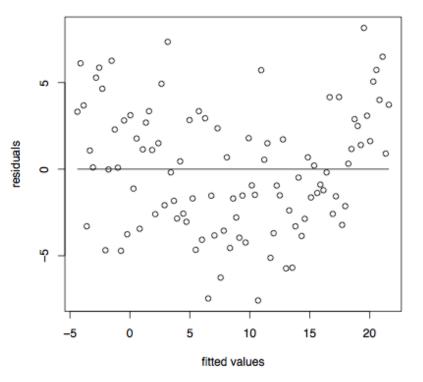
- Measure of between-person variability (random effects)
- Measure of within-person variability (residual variance)

Graphical Tools for Checking Assumptions

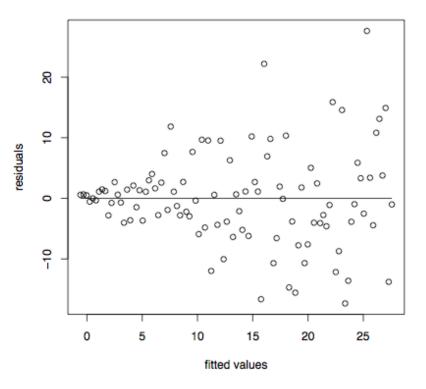
Scatter plot

- Plot one variable against another one (such as random slope vs. random intercept)
- E.g. Residual plot
 - Scatter plot of residuals vs. fitted values or a particular independent variable
- Quantile-Quantile plot (QQ plot)
 - Plots quantiles of the data against quantiles from a specific distribution (normal distribution for us)

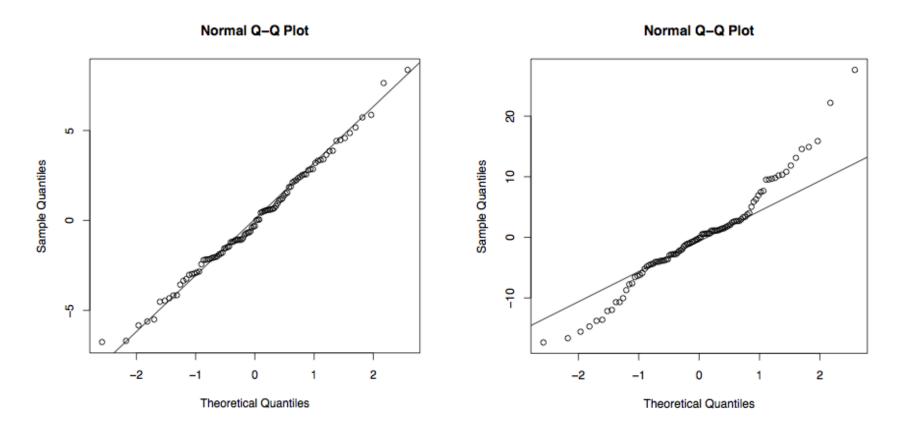
Residual Plot


Ideal Residual Plot

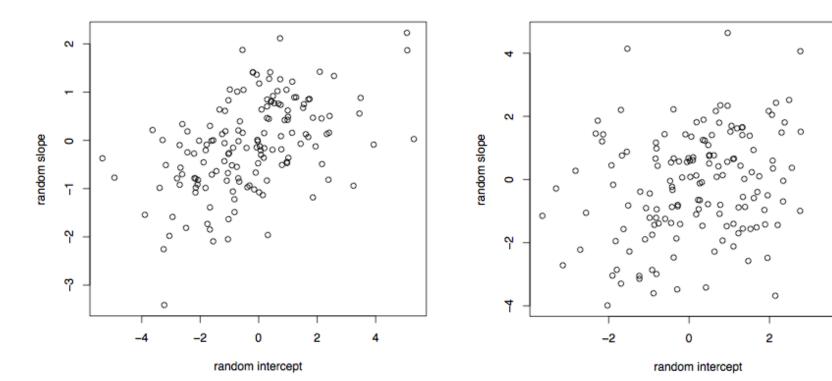
- "cloud" of points
- no pattern
- evenly
 distributed
 about zero


Non-linear relationship

- Residual plot shows a nonlinear pattern (in this case, a quadratic pattern)
- Best to determine which independent variable has this relationship then include the square of that variable into the model



Non-constant variance


- Residual plot exhibits a "funnel-like" pattern
- Residuals are further from the zero line as you move along the fitted values
- Typically suggests transforming the outcome variable (In transform is most common)

Scatter plot of random effects

Mixed Effects Models in SAS

Specifies between-person covariance structure (unstructured here)

Options: reml (default), ml, mivque0

Random intercept and slope

run;

ID variable

Specifies within-person covariance structure (compound symmetry) Data Analysis Example: ADNI Standard Repeated Measures ANOVA (similar to earlier results)

proc mixed data=adni plots=all; class rid e4(ref=`0') viscode(ref=`bl'); model adas13=e4 viscode e4*viscode/s; repeated viscode/sub=rid type=cs r; run;

(only uses a repeated statement)

Repeated Measures ANOVA output

proc mixed:

Type 3 Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F			
e4	1	272	7.70	0.0059			
VISCODE	4	1088	42.30	<.0001			
e4*VISCODE	4	1088	3.65	0.0058			

proc glm:

The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Type III SS	Mean Square	F Value	Pr > F
e4	1	2112.06952	2112.06952	7.70	0.0059
Error	272	74653.38978	274.46099		

The GLM Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

						Adj F	r≻F
Source	DF	Type III SS	Mean Square	F Value	Pr > F	G-G	H-F-L
time	4	2668.99037	667.24759	42.30	<.0001	<.0001	<.0001
time*e4	4	230.34390	57.58598	3.65	0.0058	0.0105	0.0101
Error(time)	1088	17162.41314	15.77428				

Data Analysis (Continuous time)

- Now want to use all available data, even if individuals are missing some visits
- Use time since baseline as a continuous time measure (to further account for differences in when specific visits happened)

Picking Covariance Structure

proc mixed data=adni method=ML; class rid e4(ref='0'); model adas13=e4 time e4*time/s; random int time/sub=rid type=un g; repeated /sub=rid type=ar(1) r; run;

Fit Statistics				
-2 Log Likelihood	15885.0			
AIC (Smaller is Better)	15903.0			
AICC (Smaller is Better)	15903.1			
BIC (Smaller is Better)	15938.9			

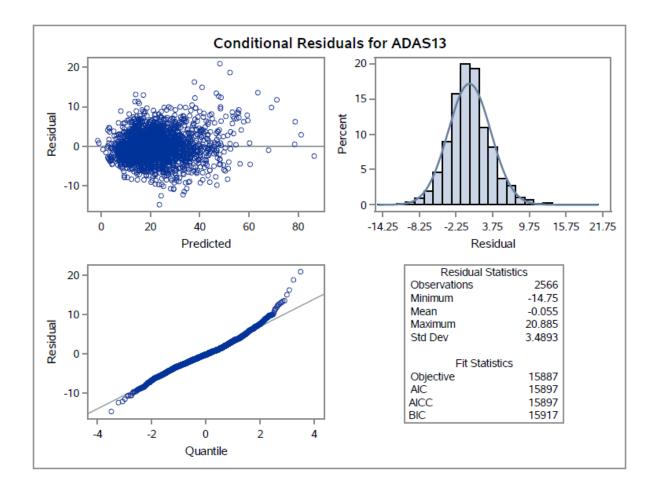
Random Int	Random Slope	Repeated Statement	G-structure	R-structure	AIC
Y	Ν	Ν	CS	-	17315.2
Y	Y	Ν	CS	-	16095.4
Y	Y	Ν	AR(1)	-	16095.4
Y	Y	Ν	UN	-	15952.3
Y	Y	Y	UN	CS	15954.3
Y	Y	Y	UN	AR(1)	15903.0

Mixed Model Output

At time=0 (study start), E4 noncarriers have an ADAS13 score of 16.8 on average

	Solution for Fixed Effects					
Effect	e4	Estimate	Standard Error	DF	t Value	Pr > t
Intercept		16.7779	0.4745	396	35.36	<.0001
e4	1	1.8136	0.6505	1786	2.79	0.0054
e4	0	0	-			-
time		2.1041	0.2315	380	9.09	<.0001
time*e4	1	1.5188	0.3186	1786	4.77	<.0001
time*e4	0	0				-

E4 carriers start 1.8 points higher


Non-carriers are increasing at 2.1 points per year

E4 carriers are increasing an additional 1.5 points per year (annual increase is 2.1+1.5=3.6)

Type 3 Tests of Fixed Effects					
Effect	Num DF	Den DF	F Value	Pr > F	
e4	1	1786	7.77	0.0054	
time	1	380	323.18	<.0001	
time*e4	1	1786	22.73	<.0001	

Overall test of significance for each term in the model

Some Diagnostics

Advanced topics

Non-normal data

- Generalized Estimating Equations (GEE)
- Repeated measures models for binary, ordinal, and count data
- Time-varying covariates
- Simultaneous growth models (modeling two types of longitudinal outcomes together)
 - Allows you to directly compare associations of specific independent variables with the different outcomes
 - Allows you to estimate the correlation between change in the two processes

Summary

- Longitudinal studies often result in repeated assessments on individuals
- Repeated measures ANOVA and mixed effects regression models are main strategies for analysis
- Mixed models can be more flexible than standard repeated measures ANOVA models
- SAS can fit both types of models

Help is Available

CTSC Biostatistics Office Hours

- Every Tuesday from 12 1:30 in Sacramento
- Sign-up through the CTSC Biostatistics Website

EHS Biostatistics Office Hours

– Every Monday from 2-4 in Davis

Request Biostatistics Consultations

- CTSC www.ucdmc.ucdavis.edu/ctsc/
- MIND IDDRC -

www.ucdmc.ucdavis.edu/mindinstitute/centers /iddrc/cores/bbrd.html

Cancer Center and EHS Center