Precision of a Mean

Objective: Determine Sample Size Necessary for Estimating a Mean

An investigator is interested in determining the sample size necessary to estimate mean blood pressure with a sufficient level of precision. The investigator is testing a new drug for hypertension and is measuring systolic blood pressure. From previous research, the new drug typically gives a mean systolic blood pressure reading of 130 mm Hg and has a standard deviation of 30 mm Hg . The investigator wants to know how many patients records to review to have a 95% confidence interval that ranges from 125 mm Hg to 135 mm Hg . That is, a 10point total width of confidence interval ($135-125=10$).

Required Information	Inputs
What is the desired level for the confidence interval?	95%
What is the target width of the confidence interval?	10
What is the standard deviation of the outcome?	30

Standard normal deviate for $\alpha=Z_{\alpha}=1.96$

Sample size $=N=4 Z_{\alpha}{ }^{2} S^{2} / W^{2}=138$

We would need a sample size of $\mathrm{n}=138$ to have a 95% confidence interval that ranges from 125 mm Hg to 135 mm Hg .

Example using the UCSF Sample Size Calculators for Designing Clinical Research (https://sample-size.net/sample-size-conf-interval-mean/)

