

# Statistical Tests Which test should I Use?

Miriam Nuño, PhD Associate Professor in Biostatistics and In Residence of Surgery Department of Public Health Sciences UC Davis School of Medicine

### September 11, 18, 2019

- UC Davis Health Clinical and Translational Science Center
- UC Davis Health Mind Institute
- UC Davis Health Comprehensive Cancer Center
- UC Davis Environment Health Sciences Center

# We are video recording this seminar so please hold questions until the end.

Thanks

# **Seminar Objectives**

- Learn how to choose the appropriate test for your data
- Provide an overview of different types of tests
- Learn how to perform the tests on SAS
- Next month's seminar will cover scenarios when your data don't meet the assumptions of the parametric test



- Nominal data: Observations fall into categories that can't be ordered.
   (e.g. Mediterranean diet, Atkins diet, South Beach diet)
- Ordinal data: Observations fall into ordered categories.
   (e.g. underweight, normal weight, overweight, obese, morbidly obese)
- Interval scale data: Observations are ordered, distance between possible values is meaningful, but no true "zero" point (impossible to compute ratios)
   (e.g. Temperature: there is a zero but it has meaning, 20° is not twice as hot as 10°)
- Ratio scale data: Observations are ordered, distance is meaningful, and a floor of "true zero" (complete absence of anything, no negative numbers) makes ratios meaningful (e.g. weight, height, age)

# **Determine test to use**

### What type of variable is the outcome?

- Continuous/Numeric
  - e.g. height (inches), weight (pounds)
- Categorical
  - e.g. Gender, Race
- Survival, time until an event occurs
  - e.g. Time until tumor recurrence, Time until cardiovascular death after some treatment intervention

### • What type of variable is the predictor?

- Categorical, continuous

# **Determine test to use**

|                         |                                      | Continuous                                                |                    |                                       |
|-------------------------|--------------------------------------|-----------------------------------------------------------|--------------------|---------------------------------------|
| OUTCOME                 | 1 group                              | 2 groups                                                  | >2 groups          |                                       |
| Continuous              | One-<br>sample t-<br>test            | Two-sample t-test<br>(dependent, independent)             | ANOVA              | Linear regression                     |
| Categorical<br>(binary) | One-<br>sample<br>proportion<br>test | Two-sample<br>proportion test<br>(dependent, independent) | Chi-square<br>test | Logistic<br>Regression                |
| Survival                | Kaplan-<br>Meier<br>Estimate         | Log Rank Test                                             | Log Rank<br>Test   | Proportional<br>hazards<br>regression |

# **Tests and Examples**

| TEST                       | EXAMPLE                                         |
|----------------------------|-------------------------------------------------|
| One-sample t-test          | Joint position sense                            |
| Two-sample t-test          | A small clinical study: weight                  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |
| One-sample proportion test | Test the proportion of babies                   |
| Two-sample proportion test | Gender differences relative to smoking behavior |
| McNemar's test             | Treatments for athlete's foot                   |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |
| Log rank test              | HMO-HIV+ Study                                  |

# **Continuous outcome**

# **Tests and Examples**

| Test                       | Example                                         |
|----------------------------|-------------------------------------------------|
| One-sample t-test          | Joint position sense                            |
| Two-sample t-test          | A small clinical study: weight                  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |
| One-sample proportion test | Test the proportion of babies                   |
| Two-sample proportion test | Gender differences relative to smoking behavior |
| McNemar's test             | Treatments for athlete's foot                   |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |
| Log rank test              | HMO-HIV+ Study                                  |

**One-sample t-test** Example: joint position sense

- Investigate ability to know what position our joints are without looking or touching
- Test whether people over- or underestimate their knee angle
- Subjects bend the knee to a 120° angle for a few seconds, then return the knee to a 90° angle. Then each person bend their knee to the 120° angle again
- The measurement variable is the angle of the knee, and the theoretical expectation from the null hypothesis is 120

**One-sample t-test** Example: joint position sense

### One group

– 16 subjects

### Outcome of interest

- the angle of the knee

# Continuous outcome with one group One-sample t-test

One-sample t-test Hypothesis being tested

- The null hypothesis
  - people don't over- or underestimate their knee angle

*H*<sub>0</sub>:  $\mu = 120$ 

The alternative hypothesis

- people over- or underestimate their knee angle

 $H_1: \mu \neq 120$ 



- The data are continuous
- The data following a normal distribution
- Samples are independent and random
- The population standard deviation is unknown

# One-sample t-test SAS code

| <pre>data onesamplettest;<br/>input angle @@;<br/>datalines;</pre>                                 |
|----------------------------------------------------------------------------------------------------|
| 120.6 116.4 117.2 118.1 114.1 112.1 115.7 112.9<br>116.9 113.3 121.1 116.9 117.0 114.0 123.0 119.1 |
| ;<br>run;                                                                                          |
| title 'One Sample T-test';                                                                         |
| <pre>proc ttest data=onesamplettest h0=120 plots(showh0) sides=2 alpha=0.05;<br/>var angle;</pre>  |
| run;                                                                                               |

### One-sample t-test SAS output

**One Sample T-test** 

The TTEST Procedure

Variable: angle

| N  | Mean  | Std Dev | Std Err | Minimum | Maximum |
|----|-------|---------|---------|---------|---------|
| 16 | 116.8 | 3.1049  | 0.7762  | 112.1   | 123.0   |

| Mean  | 95% CL | . Mean | Std Dev | 95% CL | Std Dev |
|-------|--------|--------|---------|--------|---------|
| 116.8 | 115.1  | 118.4  | 3.1049  | 2.2936 | 4.8055  |

| DF | t Value | Pr >  t |
|----|---------|---------|
| 15 | -4.15   | 0.0008  |

# List of tests and examples

| TEST                       | EXAMPLE                                         |
|----------------------------|-------------------------------------------------|
| One-sample t-test          | Joint position sense                            |
| Two-sample t-test          | A small clinical study: weight                  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |
| One-sample proportion test | Test the proportion of babies                   |
| Two-sample proportion test | Gender differences relative to smoking behavior |
| McNemar's test             | Treatments for athlete's foot                   |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |
| Log rank test              | HMO-HIV+ Study                                  |

### **Two-sample t-test** Example: A small clinical study: weight

- Collect weight information on patients
- Two groups (independent)
  - 1) Male and 2) Female
- Outcome of interest
  - difference in weight between men and women
- Continuous outcome with two groups
  Two complet toot
  - Two-sample t-test

Two-sample t-test Hypothesis being tested

### The null hypothesis

 The mean weight of male study patients is not different from that of the female study patients

 $H_0: \mu_1 = \mu_2$ 

# The alternative hypothesis

 The mean weight of male study patients is different from that of the female study patients

$$H_1: \mu_1 \neq \mu_2$$



- The data are continuous
- The data in each group following a normal distribution
- The two samples are independent
- Both samples are simple random samples from their respective populations

### Two-sample t-test SAS code

```
data twosamplesttest;
    input sex $ weight @@;
    datalines;
F 85.0 F 105.0 F 108.0 F 92.0 F 112.5
F 112.0 F 104.0 F 94.5
M 112.0 M 114.0 M 140.0 M 107.5 M 87.0
;
title 'Two Sample T-Test';
proc ttest data=twosamplesttest sides=2 alpha=0.05;
    class sex; /* defines the grouping variable */
    var weight; /* variable whose means will be compared */
run;
```

### Two-sample t-test SAS output

#### **Two Sample T-Test**

#### The TTEST Procedure Variable: weight

| sex        | Ν | Mean     | Std Dev | Std Err | Minimum | Maximum |
|------------|---|----------|---------|---------|---------|---------|
| F          | 8 | 101.6    | 10.0241 | 3.5440  | 85.0000 | 112.5   |
| м          | 5 | 112.1    | 18.9288 | 8.4652  | 87.0000 | 140.0   |
| Diff (1-2) |   | -10.4750 | 13.9368 | 7.9452  |         |         |

| sex        | Method        | Mean     | 95% Cl   | Mean    | Std Dev | 95% CL  | Std Dev |
|------------|---------------|----------|----------|---------|---------|---------|---------|
| F          |               | 101.6    | 93.2447  | 110.0   | 10.0241 | 6.6277  | 20.4017 |
| м          |               | 112.1    | 88.5968  | 135.6   | 18.9288 | 11.3409 | 54.3930 |
| Diff (1-2) | Pooled        | -10.4750 | -27.9623 | 7.0123  | 13.9368 | 9.8728  | 23.6630 |
| Diff (1-2) | Satterthwaite | -10.4750 | -33.5149 | 12.5649 |         |         |         |

|               |           |        | -       |          |   |
|---------------|-----------|--------|---------|----------|---|
| Method        | Variances | DF     | t Value | Pr > [t] |   |
| Pooled        | Equal     | 11     | -1.32   | 0.2142   |   |
| Satterthwaite | Unequal   | 5.4298 | -1.14   | 0.3015   | , |

# Test for equal variance

|  |          | Equality of Variances |        |         |        |  |  |  |  |
|--|----------|-----------------------|--------|---------|--------|--|--|--|--|
|  | Method   | Num DF                | Den DF | F Value | Pr > F |  |  |  |  |
|  | Folded F | 4                     | 7      | 3.57    | 0.1371 |  |  |  |  |

P-value for the test assumed unequal variances.

Test statistics

# **Tests and Examples**

| Test                       | Example                                            |
|----------------------------|----------------------------------------------------|
| One-sample t-test          | Joint position sense                               |
| Two-sample t-test          | A small clinical study: weight                     |
| Paired t-test              | Study: bran in the treatment of diverticulosis     |
| One-sample proportion test | Test the proportion of babies                      |
| Two-sample proportion test | Gender differences relative to<br>smoking behavior |
| McNemar's test             | Treatments for athlete's foot                      |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                     |
| Log rank test              | HMO-HIV+ Study                                     |

# **Paired t-test**

Example: bran in the treatment of diverticulosis

- Does transit time through the alimentary canal differ if bran is given in the same dosage in three meals during the day (treatment A) or in one meal (treatment B)?
- A random sample of patients with disease of comparable severity and aged 20-44 is chosen

# **Paired t-test**

**Example: bran in the treatment of diverticulosis** 

- The two treatments administered on two successive occasions
- Two groups (dependent)
  - 1) Treatment A
  - 2) Treatment B
- Outcome of interest
  - alimentary transit times
- Continuous outcome with two paired measurements on the same subject
  - paired t-test

### **Paired t-test** Hypothesis being tested

### The null hypothesis

 There is no difference in mean transit times on between these two treatments

 $H_0: \mu_A = \mu_B$ 

# The alternative hypothesis

 There is a difference in mean transit times between these two treatments

$$H_1: \mu_A \neq \mu_B$$

Paired t-test Assumptions

- The data are continuous
- The data, more specifically the differences for the matched-pairs, follow a normal probability distribution
- The sample of pairs is a simple random sample from its population.

### Paired t-test SAS code

```
data pairedttest;
    input A B @@;
    datalines;
63 55 54 62 79 108 68 77 87 83 84 78
92 79 57 94 66 69 53 66 76 72 63 77
;
title 'Paired T-Test';
proc ttest data=pairedttest sides=2 alpha=0.05;
    paired A*B;
run;
```

### Paired t-test SAS output

#### Paired T-Test

The TTEST Procedure Difference: A - B

| Ν  | Mean    | Std Dev | Std Err | Minimum  | Maximum |
|----|---------|---------|---------|----------|---------|
| 12 | -6.5000 | 15.1448 | 4.3719  | -37.0000 | 13.0000 |

| Mean    | 95% CL Mean |        | Std Dev | 95% CL  | Std Dev |
|---------|-------------|--------|---------|---------|---------|
| -6.5000 | -16.1225    | 3.1225 | 15.1448 | 10.7285 | 25.7139 |

| DF | t Value | Pr > [t] |
|----|---------|----------|
| 11 | -1.49   | 0.1652   |

# **Categorical Outcome**

# **Tests and Examples**

| TEST                       | EXAMPLE                                         |
|----------------------------|-------------------------------------------------|
| One-sample t-test          | Joint position sense                            |
| Two-sample t-test          | A small clinical study: weight                  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |
| One-sample proportion test | Test the proportion of babies                   |
| Two-sample proportion test | Gender differences relative to smoking behavior |
| McNemar's test             | Treatments for athlete's foot                   |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |
| Log rank test              | HMO-HIV+ Study                                  |

**One-sample proportion test** Example: Test the proportion of babies

- Sample 28 babies from a group under certain treatment
- One group
- Outcome of interest
  - Gender of baby
- Categorical outcome with one group
   One-sample proportion test

# One-sample proportion test Hypothesis being tested

- The null hypothesis
  - The proportion of male babies is no different from 50%

 $H_0: p = 0.5$ 

- The alternative hypothesis
  - The proportion of male babies is different from 50%

$$H_1: p \neq 0.5$$

# One-sample proportion test Assumptions

- The data are a simple random sample from the population of interest
- The sample size n is large enough so that numbers of observations in each label are 10 or more.

# One-sample proportion test SAS code

### One-sample proportion test SAS output

#### One-sample proportion test

#### The FREQ Procedure

| Gender | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|--------|-----------|---------|-------------------------|-----------------------|
| F      | 13        | 46.43   | 13                      | 46.43                 |
| м      | 15        | 53.57   | 28                      | 100.00                |

| Binomial Proportion  |        |  |
|----------------------|--------|--|
| Gender = F           |        |  |
| Proportion           | 0.4643 |  |
| ASE                  | 0.0942 |  |
| 95% Lower Conf Limit | 0.2796 |  |
| 95% Upper Conf Limit | 0.6490 |  |
|                      |        |  |
| Exact Conf Limits    |        |  |
| 95% Lower Conf Limit | 0.2751 |  |
| 95% Upper Conf Limit | 0.6613 |  |

| Test of H0: Proportion = 0.5 |         |  |  |
|------------------------------|---------|--|--|
| ASE under H0 0.0945          |         |  |  |
| z                            | -0.3780 |  |  |
| One-sided Pr < Z             | 0.3527  |  |  |
| Two-sided Pr >  Z            | 0.7055  |  |  |

Sample Size = 28

# **Tests and Examples**

| TEST                       | EXAMPLE                                         |
|----------------------------|-------------------------------------------------|
| One-sample t-test          | Joint position sense                            |
| Two-sample t-test          | A small clinical study: weight                  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |
| One-sample proportion test | Test the proportion of babies                   |
| Two-sample proportion test | Gender differences relative to smoking behavior |
| McNemar's test             | Treatments for athlete's foot                   |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |
| Log rank test              | HMO-HIV+ Study                                  |

#### **Two-sample proportion test** Example: Gender differences relative to smoking behavior

- According to an American Cancer Society report, more men than women smoke
- In a random sample of 200 males and 200 females, 62 of the males and 54 of the females were smokers
- Is there sufficient evidence to conclude that the proportion of male smokers different from the proportion of female smokers?

#### **Two-sample proportion test** Example: Gender differences relative to smoking behavior

- Two groups
  - 1) male 2) female
- Outcome of interest
  - Rate of smokers (proportion)

#### Categorical outcome with two groups

- Two sample proportion test (equivalent to chisquare test)
- Use Fisher exact test for small sample

### **Two-sample proportion test** Hypothesis being tested

### The null hypothesis

 the proportion of male smokers is no different from the proportion of female smokers

### The alternative hypothesis

 the proportion of male smokers not equal to the proportion of female smokers

### Two-sample proportion test Assumptions

- The data are a simple random sample from the population of interest
- A minimum of 10 successes and 10 failures in each group

Use Fisher exact test for small numbers

 The two groups that are being compared must be unpaired and unrelated

#### Two-sample proportion test SAS code

```
data twoindependentproptest;
    input Gender $ Smoker Total;
        Response="Smoker"; Count=Smoker;
                                               output;
        Response="Nonsmoker"; Count=Total-Smoker; output;
    datalines;
Men 62 200
Women 54 200
title 'Two independent samples proportion test';
proc freq data=twoindependentproptest;
    weight Count;
    table Gender * Response / chisq riskdiff;
run;
```

#### **Two-sample proportion test SAS output**

Two independent samples proportion test

#### The FREQ Procedure

| Frequency<br>Percent<br>Row Pct<br>Col Pct | Tabl   | Table of Gender by Response |        |        |  |
|--------------------------------------------|--------|-----------------------------|--------|--------|--|
|                                            |        | Response                    |        |        |  |
|                                            | Gender | Nonsmo                      | Smoker | Total  |  |
|                                            | Men    | 138                         | 62     | 200    |  |
|                                            |        | 34.50                       | 15.50  | 50.00  |  |
|                                            |        | 69.00                       | 31.00  |        |  |
|                                            |        | 48.59                       | 53.45  |        |  |
|                                            | Women  | 146                         | 54     | 200    |  |
|                                            |        | 36.50                       | 13.50  | 50.00  |  |
|                                            |        | 73.00                       | 27.00  |        |  |
|                                            |        | 51.41                       | 46.55  |        |  |
|                                            | Total  | 284                         | 116    | 400    |  |
|                                            |        | 71.00                       | 29.00  | 100.00 |  |

#### Statistics for Table of Gender by Response

| Statistic                   | DF | Value   | Prob   |
|-----------------------------|----|---------|--------|
| Chi-Square                  | 1  | 0.7771  | 0.3780 |
| Likelihood Ratio Chi-Square | 1  | 0.7775  | 0.3779 |
| Continuity Adj. Chi-Square  | 1  | 0.5949  | 0.4405 |
| Mantel-Haenszel Chi-Square  | 1  | 0.7751  | 0.3786 |
| Phi Coefficient             |    | -0.0441 |        |
| Contingency Coefficient     |    | 0.0440  |        |
| Cramer's V                  |    | -0.0441 |        |

| Fisher's Exact Test          |        |  |
|------------------------------|--------|--|
| Cell (1,1) Frequency (F) 138 |        |  |
| Left-sided Pr <= F           | 0.2203 |  |
| Right-sided Pr >= F          | 0.8393 |  |
|                              |        |  |
| Table Probability (P)        | 0.0596 |  |
| Two-sided Pr <= P            | 0.4406 |  |

# List of tests and examples

| TEST                       | EXAMPLE                                         |
|----------------------------|-------------------------------------------------|
| One-sample t-test          | Joint position sense                            |
| Two-sample t-test          | A small clinical study: weight                  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |
| One-sample proportion test | Test the proportion of babies                   |
| Two-sample proportion test | Gender differences relative to smoking behavior |
| McNemar's test             | Treatments for athlete's foot                   |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |
| Log rank test              | HMO-HIV+ Study                                  |

- Assume that each subjects has athlete's foot on each foot
- Each subject is given a treatment X on one foot and Y on the other foot
- Because left and right feet of the same subject are not independent, contingency test cannot be used

#### Table of treatment X by treatment Y

|             |           | Treatment Y |           |       |
|-------------|-----------|-------------|-----------|-------|
|             |           | cured       | Not cured | Total |
| Treatment X | cured     | 12          | 8         | 20    |
|             | Not cured | 40          | 20        | 60    |
|             | Total     | 52          | 28        | 80    |

#### Two groups

- 1) treatment X 2) treatment Y

### Outcome of interest

Foot cured or not

### Categorical outcome with two dependent groups

McNemar's test

McNemar's test Hypothesis being tested

#### The null hypothesis

 The paired sample proportions are equal and no (significant) change has occurred.

 $H_0: p_b = p_c$ 

# The alternative hypothesis The paired sample proportions are not equal

 $H_0: p_b \neq p_c$ 


#### Table of treatment X by treatment Y

|             |           | Treatment Y |           |       |
|-------------|-----------|-------------|-----------|-------|
|             |           | cured       | Not cured | Total |
| Treatment X | cured     | а           | b         | a+b   |
|             | Not cured | С           | d         | c+d   |
|             | Total     | a+c         | b+d       | n     |

#### McNemar's test Assumptions

- The sample was randomly selected
- The sample data consists of matched pairs
- There are 2 variables each with two categories
- The frequencies are big enough such that b+c ≥ 10

#### McNemar's test SAS code



#### McNemar's test SAS output

#### McNemar's test for Paired Samples

#### The FREQ Procedure

| Frequency | Table of treatX by treatY |          |           |       |  |
|-----------|---------------------------|----------|-----------|-------|--|
| Expected  | treat                     |          |           | Y     |  |
|           | treatX                    | cured    | Not cured | Total |  |
|           | cured                     | 12<br>13 | 8<br>7    | 20    |  |
|           | Not cured                 | 40<br>39 | 20<br>21  | 60    |  |
|           | Total                     | 52       | 28        | 80    |  |

#### Statistics for Table of treatX by treatY

| McNemar's Test        |        |  |
|-----------------------|--------|--|
| Statistic (S) 21.3333 |        |  |
| DF                    | 1      |  |
| Pr > S                | <.0001 |  |

| Simple Kappa Coefficient |         |  |
|--------------------------|---------|--|
| Карра                    | -0.0435 |  |
| ASE                      | 0.0821  |  |
| 95% Lower Conf Limit     | -0.2044 |  |
| 95% Upper Conf Limit     | 0.1174  |  |

Sample Size = 80

# **Survival Outcome**

# **Tests and Examples**

| TEST                       | EXAMPLE                                         |
|----------------------------|-------------------------------------------------|
| One-sample t-test          | Joint position sense                            |
| Two-sample t-test          | A small clinical study: weight                  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |
| One-sample proportion test | Test the proportion of babies                   |
| Two-sample proportion test | Gender differences relative to smoking behavior |
| McNemar's test             | Treatments for athlete's foot                   |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |
| Log rank test              | HMO-HIV+ Study                                  |

# **Kaplan-Meier Estimate**

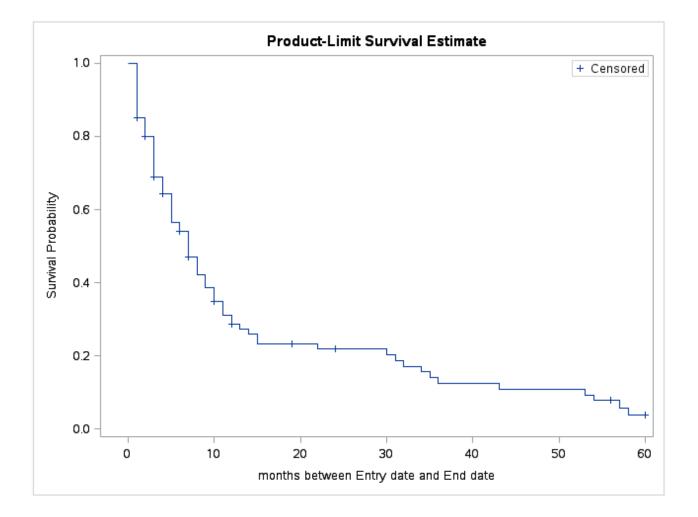
- Also known as the product limit estimator
- A non-parametric statistic used to estimate the survival function from lifetime data
- Often used to measure the fraction of patients living for a certain amount of time after treatment

#### Kaplan-Meier Estimate Example: HMO-HEV+ study

#### List of variables:

| Variable | Description            | Codes/Units                                                                                                                         |
|----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ID       | Subject ID Code        | 1-100                                                                                                                               |
| TIME     | Survival Time          | survival time (in months)                                                                                                           |
| CENSOR   | Follow-Up Status       | <ul><li>1 = Death due to AIDS or</li><li>AIDS related factors</li><li>0 = Alive at study end or</li><li>lost to follow-up</li></ul> |
| DRUG     | History of IV Drug Use | 0 = No<br>1 = Yes                                                                                                                   |

#### Kaplan-Meier Estimate Example: HMO-HEV+ study


First five observations

| ID | time | censor | drug |
|----|------|--------|------|
| 1  | 5    | 1      | 0    |
| 2  | 6    | 0      | 1    |
| 3  | 8    | 1      | 1    |
| 4  | 3    | 1      | 1    |
| 5  | 22   | 1      | 0    |

### Kaplan-Meier Estimate SAS code

```
libname present '/folders/myfolders/Presentation/';
data hmohiv;
   set present.hmohiv;
run;
ods listing close;
ods output ProductLimitEstimates=est;
proc lifetest data=hmohiv plots=(s);
   time time*censor(0);
run;
ods listing;
```

### Kaplan-Meier Estimate SAS output



# **Tests and Examples**

| TEST                       | EXAMPLE                                         |  |
|----------------------------|-------------------------------------------------|--|
| One-sample t-test          | Joint position sense                            |  |
| Two-sample t-test          | A small clinical study: weight                  |  |
| Paired t-test              | Study: bran in the treatment of diverticulosis  |  |
| One-sample proportion test | Test the proportion of babies                   |  |
| Two-sample proportion test | Gender differences relative to smoking behavior |  |
| McNemar's test             | Treatments for athlete's foot                   |  |
| Kaplan-Meier Estimate      | HMO-HIV+ Study                                  |  |
| Log rank test              | HMO-HIV+ Study                                  |  |

# Log-rank test

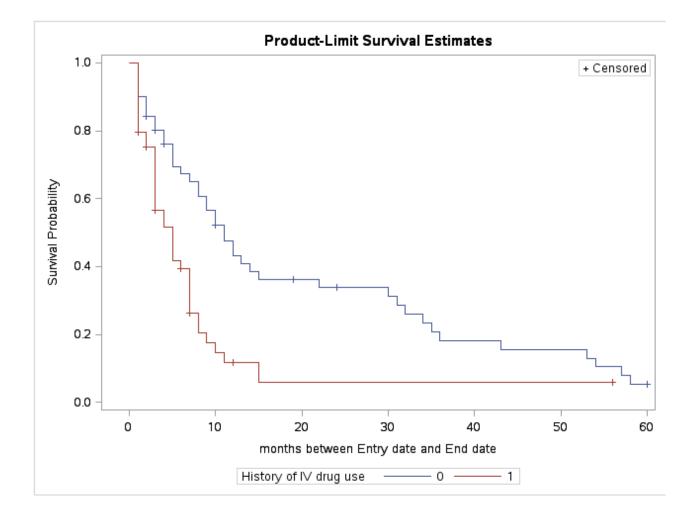
- Test to compare the survival distributions of two or more samples
- Nonparametric test for right skewed and censored
- Widely used in clinical trials on the efficacy of a new treatment in comparison with a control treatment when the measurement is the time to event

Log-rank test Example: HMO-HIV+ study

 Tests of equality of the survivorship functions across the two drug strata

#### The null hypothesis

No difference between survival curves


### The alternative hypothesis

The survival curves are different



```
proc lifetest data=hmohiv plots=(s);
   time time*censor(0);
   strata drug /test=(logrank wilcoxon tarone peto);
run;
```

#### Log rank test SAS output



#### Log rank test SAS output

| Test of Equality over Strata |            |    |                    |
|------------------------------|------------|----|--------------------|
| Test                         | Chi-Square | DF | Pr ><br>Chi-Square |
| Log-Rank                     | 11.8556    | 1  | 0.0006             |
| Wilcoxon                     | 10.9104    | 1  | 0.0010             |
| Tarone                       | 12.3359    | 1  | 0.0004             |
| Peto                         | 11.4974    | 1  | 0.0007             |

# Help is Available

#### CTSC Biostatistics Office Hours

- Every Tuesday from 12 1:30 in Sacramento
- Sign-up through the CTSC Biostatistics Website
- EHS Biostatistics Office Hours
  - Every Monday from 2-4 in Davis

### Request Biostatistics Consultations

- CTSC www.ucdmc.ucdavis.edu/ctsc/
- MIND IDDRC -

www.ucdmc.ucdavis.edu/mindinstitute/centers /iddrc/cores/bbrd.html

Cancer Center and EHS Center