

How to Work with a Statistician

Sandra Taylor, Ph.D. Clinical and Translational Science Center University of California, Davis 26 April 2012

Overview

- Understand what statisticians can (and cannot) do for you
- Know your responsibilities as a researcher
- Highlight some "do's" and "don'ts"
- Resources available through the CTSC
- Example consultations

Why and when to work with a statistician?

Planning the study

- Study design, randomization, sample size
- Proposal preparation

Conducting the study

- Interim analyses, DSMB

Evaluating the results

Conducting statistical analyses

Reporting the results

- Interpreting the results
- Manuscript preparation

The Research Process

"Gee, I wonder if..."

Planning Stage Involvement

UC DAVIS CLINICAL AND TRANSLATIONAL SCIENCE

Planning Stage Involvement

Statistics can't fix a poorly designed study!

Planning Stage Activities

RESEARCHER

- Develop specific aims
- Identify endpoints
- Formulate testable hypotheses
- Develop study protocol
- Identify confounding factors, potential biases

STATISTICIAN

- Formulate testable hypotheses
- Study design, randomization, matching
- Sample size needs
- Statistical analysis plan
- Identify confounding factors, potential biases

Before Meeting with a Statistician

- Clearly define your specific aims
- Identify measureable endpoints for each aim
- Know how you will collect the data
- Consider confounders and potential biases
- Review relevant literature

Specific Aim 1: Determine if new treatment is better than standard care.

- What constitutes better?
- What measureable parameter reflects better?
 - Survival, number of events, mean value?
- What testable hypothesis addresses the specific aim?
 - H₀: Mean cholesterol under new treatment does not differ from standard care
 - H_a: Mean cholesterol under new treatment differs from standard care

How do I test my hypothesis?

Type of study

Prospective or retrospective

Definition of cases and controls

Exclusion and inclusion criteria

Matching/stratification procedures

Randomization

Subject selection, block randomization

Sample size requirements

How many subjects do I need?

- Too few insufficient power to detect differences
- Too many unnecessary costs
- Statisticians need input from researchers to determine sample size requirements.

Biologist talks to Statistician video

https://www.youtube.com/watch?v=Hz1fyhVOjr4

Please consult a statistician early!

Sample size determination comes at the end of a series of steps.

How is sample size determined?

Depends on:

- Specific aim primary hypothesis of the study
- Study design
 - These two influence the statistical test.
- Effect size to be detected
- Variability of the response variable
 - Researchers need to provide this information

Example: New medication study

- Test: H_o : $\mu_{new} = \mu_{old}$ vs. H_a : $\mu_{new} \neq \mu_{old}$
- Design: Randomized into each arm
- Statistical method: t-test

 $n = \frac{\left(Z_{\alpha/2} + Z_{\beta}\right)^2 \sigma^2}{\Lambda^2}$

• σ^2 = variance; Δ = effect size to detect

Researchers need to provide this information.

- Published results
- Pilot data
- Clinically meaningful change

Sample size calculations may not be straight-forward

- More complex designs require more complex calculations
- Examples:
 - Longitudinal studies
 - Cross-over studies
 - Correlation of outcomes

Sometimes simulations are required

Sample size calculations may not be straight-forward

- More complex designs require more complex calculations
- Examples:
 - Longitudinal studies
 - Cross-over studies
 - Correlation of outcomes

Sometimes simulations are required

THERE IS NO MAGIC NUMBER.

Proposal Content

Proposal sections involving statistics

- Sample size justification
- Statistical analysis plan
 - Statistical methods for each aim
- For clinical trials,
- Interim analyses/Early stopping rules

Engage a statistician to write or at least review these sections.

Common statistical problems in proposals

- Sample size justification absent or insufficiently justified
- Lack of statistical analysis plan for all aims, including secondary aims
- Inappropriate statistical analysis methods

Common statistical problems in proposals

- Sample size justification absent or insufficiently justified
- Lack of statistical analysis plan for all aims, including secondary aims
- Inappropriate statistical analysis methods

These issues can doom a proposal.

UC DAVIS CLINICAL AND TRANSLATIONAL SCIENCE

Data Collection and Compilation

💮 🔻 🕑 🛃 🗝 Google .ucdmc.ucdavis.edu/ctsc/redcap/ isited 📋 Getting Started 🔊 Latest Headlines 🔊 Subscribe to Deborah ... 🕥 Access 2010 And Share.. UC Davis Health System | News | Jobs | Giving | UC Davis UCDAVIS **HEALTH SYSTEM** search Clinical and Translational Science Center Health System > Clinical and Translational Science Center > REDCap 🖂 E-mail 🍉 Tweet 🌠 Facebook 🚔 Print 🚹 Share REDCap (Research Electronic Data Capture) 📌 REDCap & REDCap Survey Clinical and Translational Science Center REDCar View dates for upcoming REDCap training and drop-in worshops at the CTSC Event Calenda Application for Resource Use REDCap Survey (AFRIII) Investigators What is REDCap? **Biomedical Informatics** TSC Application f REDCap (Research Electronic Data Capture) is a secure web **Clinical Trials Resource Group** application for building and managing online databases for Launch REDCap REDCap Project Level Community Engagement and research. Agreement (PDF) Research REDCap Text for IRB and CTSC Clinical Research Using REDCap's stream-lined process for rapidly developing Grant Submissions Center (CCRC) Citing REDCap and the projects, you may create and design projects by constructing a Pilot Translational and CTSC in Publications 'data dictionary' template file in Microsoft Excel, which can be later Clinical Studies Frequently Asked Que Click here to go to REDCap Survey uploaded into REDCan, REDCan provides audit trails for tracking Research Design, data manipulation and user activity, as well as automated export procedures for seamless data downloads to Excel, PDF Biostatistics and Clinical and common statistical packages (SPSS_SAS_Stata_R). Also included are a built-in project calendar a scheduling module Research Ethics low to Create the Data ad hoc reporting tools, and advanced features, such as branching logic, file uploading, and calculated fields Research Education, Training, Dictionary (Video) (14 mir and Career Development Sample Data Dictionary How do I get access to REDCap? Translational Technologies, (CSV) Methodologies, and Resources User Permissions Matrix You will only have to request access once. Access to individual projects is determined by the User Facilities, Cores, and (Excel) Permissions Matrix submitted for each project. Resources Evaluation 1. Submit a Lotus Notes Online Access Request, instructions are on the How to request access page low to request acces Grant Facilitation REDCap End User 2. Send (fax, inter-office mail, or scan and email) the signed REDCap End User Agreement to the CTSC informatics staff Newsroom Agreement (PDF) responsible for your project Research Networking UCDHS Confidentiality Agreement (PDF) Seminars and Events How do I begin using REDCap? Create New UC Davis Contact Us Kerberos Accoun The CTSC Biomedical Informatics Program has developed a six-step process to create a database. We encourage UC Davis Temporary Affi researchers to begin working with biostatisticians early. Application for Resource Use To get started, please complete the CTSC Application for Resource Use. Six-step process to create a REDCap Database (hover over each box for details) 2. Create Data 4. Create 5. Final Review 6. Begin . Introductory 3. Data Review Meeting Dictionary Meeting Database Entering Data

Data Collection and Compilation

Valid results require

- Collection of accurate data
- Clear and accurate data compilation
- Create <u>workable</u> and <u>documented</u> data sets
- QA/QC procedures
 - Validation during data entry
 - Periodically audit the data
 - Conduct internal validation of final data

Bad Scene!

4	Α	В	С	D	E	F	G	Н		J	K	L
1	Comparison of Drug A and Drug B											
2	Drug A	Age of Patient	Patient	Height	Weight	24hrhct	blood pressure	tumor	Race	Date	complications	
3			Gender	(inches)	(pound)			stage		enrolled		
4												
5	1	25	Male	61"	>350	38%	120/80	2-3	Hipanic	1/15/99	no	
6	2	65+	female	5'8"	161	32	140/90	1	White	2/05/1999	yes	
7	3	?	Male	120cm		12	>160/110	IV	Black	Jan 98	yes, pneumonia	
8	4	31	m	5'6"	obse	40	40 sys 105 dias	?	African-Am	?		
9	5	42	f	>6 ft	normal	39	missing	=>2	W	Feb 99		
10	6	45	f	5.7	160	29	80/120	NA	В	last fall	n	
11	7	unknown	?	6	145	35	normal	1	W	2/30/99	n	
12	8	55	m	72	161.45	12/39	120/95	4	African-Arr	6-15-00	у	
13	9	6 months	f	66	174	38	160/110	3	Asian	14/12/00	у	
14	10	21	f	5'								
15												
16	Drug B											
17	1	55	m	61	145	normal	120/80 120/90	IV	Native Am	6/20/	3	
18	2	45	f	4"11	166	?	135/95	2b	none	7/14/99	n	
19	3	32	male	5'13"	171	38	140/80	not staged	NA	8/30/99	n	
20	4	44	na	65	?	40	120/80	2	?	09/01/00	n	
21	5	66	fem	71	0	41	140/90	4	W	Sep 14th	y, sepsis	
22	6	71	unknown	172	199	38	>160/110	3	b	unknown	y, died	
23	7	45	m	?	204	32	40 sys 105 dias	1	b	12/25/00	n	
24	8	34	m	NA	145	36	130	3	W	July 97	n	
25	9	13	m	66	161	39	166/115	2a	W	06/06/99	n	
26	10	66	m	68	176	41	1120/80	3	W	01/21/58	n	
27												
28	Average	45		65	155	38						

RedCAP is user-friendly alternative.

Editing existing Patient Number 1111111							
Event Name: Baseline							
Patient Number	1111111 (To rename this record, modify the value immediately below.)						
Patient Information							
Patient Number * must provide value	1111111 Identifying number assigned to the patient						
Patient Name	Given name						
Date of birth	08-24-1960 Today M-D-Y MM-DD-YYYY						
MRN	023456 Assigned by UCDMC (some patients may not have this)						
Ethnicity (Asian Ethnicity of patient						
Gender (Gender of patient						

Leverage informatics and biostatistics expertise

Medical informatics group can

- Create forms for data collection
- Extract information from EMR
- Use inter-disciplinary team to determine what information to collect and how
 - Investigator, practitioners, biostatistician, informatics specialist
 - Ensures information is collected and compiled in a manner that facilitates analysis

Data Do's and Don'ts

- Use RedCAP where possible
- Assign unique ID to each subject and use consistently
- Remove all PHI prior submitting to statistician
- Unambiguously and consistently specify missing values

Avoid using "0" or blanks for missing values

Avoid free text fields

Each data set needs a Code Book

Guidelines for Data Set Documentation <u>http://biostats.ucdavis.edu/DatasetDocumentation.</u> <u>php</u>

- Name of the data file as it is stored on the computer
- Name of the code book's author, including contact information
- Date the code book was last updated.
- Number of records in the data file.
 - List of variables, including for each variable
 - Variable name
 - Location of variable, length of field
 - Allowable range for data
 - Missing data codes
 - Interpretation of values if not obvious (e.g. 1-male, 2-female.)

Go forth and collect data!

Statistician activities during the study

- Sometimes limited involvement by statistician
- Involvement can include
 - Conducting interim analyses
 - Serving on DSMB
- Some study designs entail periodic reassessments and statistician will necessarily be involved during the study
 - Two-stage, adaptive or sequential trials

Analysis and Reporting

(P.S. This is the fun part.)

Analyzing the data

Conduct statistical analyses

- Data validation
- Run statistical tests
- Interpret the results
- Prepare tables and figures to illustrate findings

Working with a Statistician to Analyze your Data

Range of support provided

If statistician analyzes the data...

- Remove PHI
- Provide "clean" data set
- Provide data dictionary
- Allow sufficient time for analysis
 - Rule of Thumb is 4 to 6 weeks
- Provide references from similar studies if available
- Iterative and interactive process

Incorrect method results in incorrect conclusions.

Data with special statistical issues

Correlated values

- Multiple measurements on same subject
- Clustering of subjects (e.g., same hospital, same litter)

Longitudinal data

- Repeated measurements over time on same subject
- Missing data and drop outs
- High-dimensionsal data
 - microarrays, proteomics

Report/Publication Preparation

- Craft statistical analysis section
- Contribute to results section
- Generate tables and figures

Resources at UC Davis

- Clinical and Translational Science Center
 - Biostatistics Workshop: 12-1 on Tuesdays sltaylor@ucdavis.edu
 - Biostatistics Core
 - Assist with study design, grant writing, data analysis and interpretation
 - Application for Resource Use (AFRU) <u>http://www.ucdmc.ucdavis.edu/ctsc/</u>
- Division of Biostatistics

Parting Tidbits

What we can't do.

Fix a poorly designed study

Make something significant

P value < 0.05

Tell you what's important

What we won't do.

Find a significant result, i.e., "data snooping"

Clean up your data

Troubleshoot your code

Requests that Seriously Irritate Us

- "My abstract is due Friday. Can you analyze my data by tomorrow?"
- "I have a really simple question. It'll only take 15 minutes."
- "My paper got rejected because of the statistics. Can you fix it?
- "I keep getting error messages with my code. Can you look at it?"

What we love to do.

Help investigators achieve goals

Collaborate to bring new insights

Contribute to societal improvements

Example Project #1

Traumatic Brain Injury Outcomes

How do TBI patient outcomes differ with Glasgow Coma Scores at admission?

What is your outcome?

How do TBI patient outcomes differ with Glasgow Coma Scores at admission?

- What is your outcome? Survival
- Survival to when?
 - 60-day?
 - 30-day?
 - Discharge?

How do TBI patient outcomes differ with Glasgow Coma Scores at admission?

- What is your outcome? Survival
- Survival to when?
 - 60-day?
 - 30-day?
 - Discharge
- What specifically do we want to test?

GCS Groups

TBI Patient Outcomes Study Aim

Specific Aim 1:

Determine if survival to discharge differs between patients with moderate (9-12) and good (13-15) Glasgow Coma Scores.

Endpoint: Survival to discharge

Testable Hypothesis: $H_o: p_{mod} = p_{good}$ versus $H_a: p_{mod} \neq p_{good}$

Statistical Test: Two-sample Proportion Test

How do we test this hypothesis?

How about a prospective study?

- How could you do this?
- Follow patients that come in with TBI and GCS of 9 or greater

What issues/questions arise with a prospective approach?

- How many patients necessary?
- How long to recruit this number?
- What are the confounders? Can we control for them?

How do we test this hypothesis?

How about a retrospective study?

- How could you do this?
- Extract EMR information for patients with TBI and a GCS of 9 or greater
- What issues/questions arise with a retrospective approach?
 - Do we have enough patients in the EMR?
 - What are the confounders? How can we account for them?

Prospective vs. Retrospective

Prospective

- Ensure ALL desired data collected
- Current information
- Randomization
- Matching or stratification

Retrospective

- Large sample size
- Data available now
- Easier logistically
- Confounding factors

Prospective vs. Retrospective

Prospective

- Ensure ALL desired data collected
- Current information
- Randomization
- Matching or stratification

Retrospective

- Large sample size
- Data available now
- Easier logistically
- Confounding factors

For this particular study, a retrospective approach makes the most sense.

Sample Size Requirements

- Prospective studies how many to recruit
- Retrospective studies do we have enough
- Information needs
 - Survival of patients with moderate GCS
 - Difference in survival you want to detect

Inclusion/Exclusion Criteria

Include

- TBI with GCS 9+
- 16+ years old
- Arrival at Level 1 trauma center, including transfers

Exclude

- No TBI or GCS < 9</p>
- Under 16 years old
- Penetrating injury
- Burn injury
- Others?

What are other potential confounding factors?

- Injury severity
- Age
- Gender
- Comorbidities

What are potential confounding factors?

- Injury severity
- Age
- Gender
- Comorbidities

Statistics can't help a woefully unbalanced study

- Develop statistical analysis plan
- Work with Informatics and Biostatistics
 - Identify data to extract from the EMR
 - Develop data dictionary and supporting data forms
- Conduct data validation
- Statistically analyze the data

Example Project #2

Toradol Use for Rib Fractures

Does Toradol reduce the incidence of pneumonia in patients with rib factures?

- What is the endpoint of interest?
- Prospective or retrospective?

Does Toradol reduce the incidence of pneumonia in patients with rib factures?

- What is the endpoint of interest?
- Prospective or retrospective?
 - Prospective preferred (Why?)

Does Toradol reduce the incidence of pneumonia in patients with rib factures?

- What is the endpoint of interest?
- Prospective or retrospective?
 - Prospective preferred (Why?)
- What issues arise for a retrospective study?
 - Comparability of groups
 - Age, injury severity, comorbidities

What if the data look like this?

Age

UC DAVIS CLINICAL AND TRANSLATIONAL SCIENCE CENTER

F

Take Home Messages

Statistics matter

 Study design, sample size, appropriate analytical methods

Consult earlier rather than later

- Greatest value from consulting early
- Can't fix a poorly designed study

View statisticians as collaborators

- Authorship, funding support