

Construction Dust Infection Prevention Best Practice Standard Version 5.0 - July 2025

TABLE OF CONTENTS Project Manager......4 Contractor 5 Containment Inspectors.......5 Environmental Health and Safety 5 Equipment8 Procedure 9 Work Practices9

ICRA Class Change (aka "ICRA Downgrade")	17
Final Inspection BEFORE Dismantlement (aka "Final Visual")	18
References	20
Appendix A: Containment Inspection Log	21
Appendix B: Entry Warning Sign with Project Manager Contact	23

PURPOSE

This document represents the minimum best practice standards to prevent the acquisition of nosocomial infection in patients due to exposure to potentially infectious or harmful dust created by construction, renovation, or maintenance activities.

Aspergillus fungal spores carried on dust particles are the most common cause of construction-related infection in healthcare settings. Overall mortality from healthcare construction and renovation-related fungal infection is 50%. Infection due to construction in healthcare facilities is estimated to cause 5,000 deaths each year in the United States.

The Project Manager, Infection Prevention, and Environmental Health & Safety will audit performance to this standard, as amended by the needs of specific projects. All users of this standard are authorized to contact EH&S directly with questions or for consultation.

SETTING

All work has been evaluated by IP and EH&S and received an Infection Control Risk Assessment (ICRA) permit for construction, remodeling, maintenance, or repair activities at the University of California, Davis Health (UCDH) facilities. This includes external construction and work at leased facilities where owner-provided contractors are used. Work in non-patient care areas such as the School of Medicine and medical research facilities may be excluded.

This standard does not apply to projects coming in contact with hazardous materials, such as asbestos, lead, chemical, or radioactive materials. Projects involving hazardous materials must undergo additional assessment and approval processes. If hazardous materials are discovered during work, immediately contact UCDH Environmental Health & Safety (EH&S) and Infection Prevention (IP) for additional risk assessment.

DEFINITIONS

Anteroom – a small room connected to the entrance of the negative pressure containment, used for donning/doffing protective clothing and adding a layer of insulation between the containment and hospital environment; required on Class IV and V containments.

Audit – an official review to confirm containment inspections are being completed appropriately and/or assess contractor performance. EH&S or IP conducts audits.

Containment – a system of barriers and/or negative pressure equipment that isolates the construction zone air space from the adjacent hospital environment.

Containment Inspector – may perform any of the inspections listed in the "Inspection Criteria" section listed on Page 15 & 16, except for the initial containment inspection (aka "Pre-start"). Containment inspectors must be trained annually.

Critical Barrier – barrier sealed over critical openings into the work area such as HVAC vents, doorways, electrical outlets, gaps in a drop in ceilings, or other openings.

DOP test – filter challenge test; a standard recognized method to test the integrity of a HEPA filter using dispersed oil particulate (DOP) and particle counting techniques which a specialty contractor performs.

HEPA filter – High-Efficiency Particulate Air (HEPA) filter removes 99.97% of particles 0.3 micrometers and is even more efficient for particles of other sizes.

Immunocompromised – having a weakened immune response due to an infection, disease, or immunosuppressive agents such as medication or irradiation.

Infection Control Risk Assessment (ICRA) – a process that evaluates patient risk due to construction activities focused on reducing the risk of infection; based on a matrix of the affected patient population and the invasiveness of the work. This assessment generates a permit issued by Infection Prevention requiring compliance with one of five precaution levels (classes). See UCDH Hospital Policy and Procedure 2004.

Inspection – examination of the containment to confirm it meets the permit requirements.

In writing – written, hard copy, or electronic communications. Electronic communications must be retained in the same manner as hard-copy documents.

Manometer – electronic pressure measuring instrument sensitive to measuring one-thousandth of an inch of water pressure (e.g., -0.020" wp).

Negative pressure – pressure within a system that is less than the environment that surrounds that system; having atmospheric pressure that is less than the ambient atmospheric pressure—examples: vacuum flask (thermos) interstitial space, airborne infectious agent isolation room.

Nonporous – free from minute spaces or holes (pores) where contamination may be trapped; smooth.

Nosocomial Infection – hospital-acquired infection; infection contracted from the environment, staff, or operations of a healthcare facility.

Particle Counting – method of determining ambient particulate concentrations of various sized airborne particles using a laser diode and photodetector; not specific to the nature of the sampled particle.

Poly – polyethylene sheeting; plastic film sheeting used to contain contamination.

Positive pressure – pressure within a system that is greater than the environment that surrounds that system; having atmospheric pressure that is greater than the ambient atmospheric pressure. Example: inside of an inflated balloon or tire. Patient Care Area – a location where patient care is provided, not limited to direct treatment, and can include waiting rooms, lobbies, food service areas, and other places throughout the facility where patients may be present. Infection risks are elevated in these locations as immuno-compromised patients are concentrated.

RESPONSIBILITIES

All parties to this standard must primarily act in the best interests of patients and patient care, regardless of the impact on project timelines or other constraints.

PROJECT MANAGER

The Project Manager (PM) is the Facilities Planning and Development (FP&D) or Plant Operations and Maintenance (PO&M) representative overseeing project execution. The PM oversees the Contractor or in-house personnel who are performing the work. A third-party construction manager may supplement the PM's duties, but the UCDH PM retains all responsibility under this best practice standard.

The project manager shall ensure the following:

- All work is performed under an approved ICRA
- An Interim Life Safety Measure (ILSM) plan is created, if necessary
- Coordination with work area stakeholders regarding the potential impacts on patient care, including the containment location, project duration, and any changes during construction
- This best practice document is followed throughout the duration of the project
- A qualified consultant is hired for projects (as determined by agreement between FP&D and EH&S) and for projects that take place after hours or on weekends
- Plans and specifications (bidding documents) are developed per this best practice standard
- Containment inspectors and consultants perform to this best practice standard
- Contractor expectations are communicated in writing before the start of work
- The Contractor must comply with plan specifications and approved ICRA permit precautions.
- Routine containment inspections are performed and documented by a trained, qualified containment inspector
- Project documentation is maintained
- Containment failures or severe breaches of practice are communicated to EH&S and IP in writing as soon as possible
- Root causes of failures are determined, and corrective action is taken to prevent future episodes

- Work is stopped for excessive noise/vibration, breach of containment, non-compliance with this best practice standard, or other patient care is compromised by the work
- Environmental Services (EVS) is contacted for a terminal cleaning of the project area after a successful final inspection and containment dismantlement

CONTRACTOR

The Contractor is responsible for complying with all provisions of plans, specifications, and approved ICRA permit precautions to control construction dust at the project site. These provisions include witnessed DOP testing of all HEPA-filtered equipment.

The Contractor shall ensure that all site workers, including subcontractors, are knowledgeable of the requirements of plans, specifications, and approved ICRA permit precautions and the reasons for controlling construction dust. The Contractor is required to stop work at times of excessive noise or vibration when containment is breached when this standard is not being complied with, and when directed by the PM, EH&S, or IP.

CONTAINMENT INSPECTORS

Containment inspectors may perform any of the inspections listed in the "Inspection Criteria" section listed on Page 15 & 16, except for the initial containment inspection (aka "Pre-start"). Containment inspectors must be trained on an annual basis by EH&S, IP, or a qualified consultant and report to the PM.

ENVIRONMENTAL HEALTH AND SAFETY

Environmental Health and Safety (EH&S) is responsible for providing consulting services related to this best practice standard, auditing containment inspector and consultant performance, and updating these best practices document.

EH&S is responsible for ensuring either EH&S or the consultant performs the following:

- Witness and/or confirm DOP testing of HEPA-filtered equipment [or perform particle count challenge testing in rare cases]
- Complete site inspections according to this best practice standard (must perform the pre-start inspection and approve of the containment design)
- Audits of contractor performance, including particle counting
- Training of containment inspectors
- Environmental sampling, as needed
- Investigation of containment failures
- Stop work for excessive noise/vibration, breach of containment, non-compliance with this best practice standard, or other patient care is compromised
- Along with IP, approve any deviations to this best practice standard

INFECTION PREVENTION

The Department of Hospital Epidemiology and Infection Prevention (IP) is involved in many facets of the control and prevention of nosocomial infections at UC Davis Health System, including infections from construction dust. The IP Department reviews and approves Infection Control Risk Assessments (ICRAs) of construction projects; along with EH&S, approves temporary deviations to this best practice standard to support unique scenarios; and approves this best practice standard document. IP may audit compliance with this Standard and have the authority to stop work for: excessive noise/vibration, breach of containment, non-compliance with this standard, or other project issues compromising patient care.

Infection Prevention is responsible for performing:

- Site inspection audits according to this best practice standard
- Audits of contractor performance
- Training of containment inspectors
- Investigation of containment failures
- Stop work for excessive noise/vibration, breach of containment, non-compliance with this best practice standard, or other patient care is compromised

ALONG WITH EH&S, APPROVE ANY DEVIATIONS TO THIS BEST PRACTICE STANDARDENVIRONMENTAL SERVICES

Environmental services (EVS) personnel perform terminal cleaning of project areas once containments have been removed (per UCDH Hospital Policy and Procedure). The PM must provide a 24-hour notification to EVS that terminal cleaning will be needed, in addition to notification when the containment is removed. Note that containment removal cannot occur until the Contractor has completed a full cleaning of the containment, and the final visual inspection has passed. EVS personnel also occasionally perform final clean inspections for some work.

CONSULTANTS

Consultants retained by FP&D or PO&M provide project scoping, planning, specification, and work plan development, project monitoring compliance with this standard, and inspection services. EH&S shall approve consultants based on education, training, and experience before beginning billable work. Consultants may only use qualified employees trained and experienced with infection prevention and construction dust control in a hospital setting. Consultants shall be directed by the PM and shall communicate with EH&S and the PM.

POLICY

All work that has received an ICRA Class III*, IV, or V permit must be completed using a negative pressure containment system to separate the construction air space from the hospital environment. This system comprises an enclosed work area and HEPA-equipped filtration units providing negative pressure to the work area. The following policies shall apply to all personnel working with negative pressure containments at UCDH facilities.

TRAINING

All personnel working with negative pressure containments shall be trained and knowledgeable in the following:

- ICRA Permit contents and requirements
- Site-Specific Containment plan
- Provisions of this best practice standard
- Requirements in Section 01561 Airborne Contaminant Control Specifications
- Infection risks associated with construction
- Methods to control the dissemination of dust and fungal spores
- Proper use of protective clothing
- Proper entry and exit procedures
- Manufacturer's requirements, where manufactured containment systems are used (e.g., cubes)
- How to respond to a loss of negative pressure or too much negative pressure
- Breach in Practice response and required notifications
- Contractors shall be additionally trained in the following:
- Proper containment design, construction, and maintenance techniques
- Proper load-out techniques for equipment/wastes
- Containment cleaning regime: daily, final, and terminal cleaning

CONTAINMENT FAILURE EMERGENCIES CAUSED BY THE CONTRACTOR MAY REQUIRE RETRAINING AT THE DISCRETION OF THE PM, IP, OR EH&S. TRAINING IS TO BE PROVIDED BY EH&S, OR AN EH&S-APPROVED TRAINING PROVIDER, SUCH AS A CONSULTANT. EXPERIENCE

Contractors, consultants, and containment inspectors shall demonstrate the following experience requirements before performing duties under this standard.

CONTRACTORS

To be considered qualified to work with negative pressure containments, contractors must demonstrate experience by providing either of the following:

- Previously completed, documented negative pressure containment work in a healthcare facility along with an owner reference. Minimum documentation shall include project descriptions and photographs or containment schematics.
- Documentation that the contactors' proposed onsite Foreman and onsite Supervisor has successfully obtained one of the following from the American Society for Healthcare Engineering (ASHE):
- Certified Healthcare Constructor (CHC) Certification;
- Health Care Construction (HCC) Certificate; or
- Managing Infection Prevention During the Construction & Operation of Health Care Facilities Course Completion

CONSULTANTS

To be considered qualified to work with negative pressure containments, consultants must demonstrate all the following:

- Hands-on oversight by a Certified Industrial Hygienist (CIH) in good standing with the American Board of Industrial Hygiene (ABIH)
- Field personnel shall be experienced in Healthcare Construction Infection Prevention and shall possess certification in good standing by Cal/OSHA as a California Certified Asbestos Consultant (CAC) or Certified Site Surveillance Technician (CSST)
- Owner references for previously completed, documented negative pressure containment oversight work in healthcare facilities

CONTAINMENT INSPECTORS

Containment inspectors may be trained in-house UCDH personnel or outside, third-party consultants. Approval shall include ensuring familiarity with the following:

- The operation, maintenance, and inspection of HEPA-filtered equipment
- Methods to achieve and maintain negative pressure in containments
- Methods to monitor negative pressure
- Inspection elements and documentation requirements

In-house containment inspectors may only inspect containments that do not require negative pressure. All negative pressure containments shall be inspected by a third-party consultant.

Requests for exemption: PMs may place a request to use trained-in house personnel, rather than third party consultants, during the weekly ICRA committee meeting.

EQUIPMENT

Equipment used for construction containments must arrive free and clean of any debris or significant dust. Equipment that cannot be thoroughly decontaminated must arrive wrapped in 6 mil (0.006 inches) polyethylene sheeting, be used only within negative pressure containment, be wrapped before transport out of the containment, and be transported offsite in a covered cart.

All polyethylene sheeting shall be flame retardant and at least six mils thick. Waste bags shall be six mils thick.

All HEPA-filtered equipment must be tested before being utilized to ensure the integrity of the filter and housing. The equipment will be tested onsite by standard dispersed oil particulate (DOP) challenge testing using a certified independent testing contractor. In rare cases or emergencies, EH&S or an approved consultant may perform onsite particle challenge testing of HEPA-filtered equipment. A legible label indicating the date tested, testing party, and expiration date must be affixed to the equipment for it to be considered compliant with this best practice standard.

Both DOP and particle tests shall be valid for six months from the date of initial testing, provided the Contractor certifies and can verify that the machines have remained at the same building with the

same filters in place since initial testing and have not been moved, modified, inverted, or roughly handled in that time. Previously tested equipment removed from the building shall be tested before being reutilized onsite.

PROCEDURE

Best practice procedures must be used wherever possible when working with negative pressure containment systems.

WORK PRACTICES

To minimize the creation of airborne dust, capture and control dust as close to the source of generation as possible. Use water mist, HEPA vacuums, vacuum tool attachments, and/or other methods to prevent the spread of dust within the containment.

Clean as you go and clean up promptly. Vacuum up dust as it is generated. Vacuum out exposed cavities as soon as they are made accessible. The Contractor shall perform daily cleaning of the containment interior by HEPA, vacuuming any noticeable dust, and bagging up debris. Do not leave debris in an unoccupied containment.

The Contractor shall inspect the containment before starting work and immediately repair any breaches, holes, or other issues.

Stop work and notify the PM immediately if unforeseen hazardous materials (including mold) are discovered during construction. This condition will warrant a reassessment of the project by IP and EH&S.

Use only tested, HEPA filter-equipped vacuums. Do not use standard shop vacuums; all vacuums without HEPA filters are dust distributors.

Avoid dry sweeping, dry shoveling, or other dry debris cleanups. Use a water mist or sweeping compound before sweeping or shoveling debris. Do not use compressed air on dust or debris. In occupied areas, provide an effective means of diffusing the air exhausted from HEPA-filtered negative air machines.

PROTECTIVE CLOTHING

Class IV and V containments require protective clothing, including shoe covers. The purpose of this clothing is to protect street clothing from becoming contaminated during work and prevent the track out of dust.

Shoe covers may be attached to protective suits or may be worn separately. Head coverings are not required unless dust creation is expected to be extensive, as in the case of abrasive blasting or concrete coring, or head exposure is likely, as in the case of attic crawling. Protective clothing may be disposable (e.g., Tyvek suits) or reusable and regularly laundered.

Note that disposable suits are not typically fire-resistant and, therefore, not intended for hot work environments. If fire-resistive clothing is necessary, it must be brought onsite in a sealed bag, used only within containment, and re-bagged and sealed before offsite transport.

DECONTAMINATION

To avoid tracking construction dust in the hospital environment, workers and equipment must be carefully decontaminated before exiting the containment.

PERSONNEL

For exceptionally dusty work, before removing protective clothing, clean the outside surface using a HEPA equipped vacuum or damp towel/sponge frequently rinsed in clean water. Do not use disinfectants to wipe skin or protective clothing to avoid chemical hazards.

If respiratory protection is used, remove protective clothing before removing the respirator. When removing protective clothing, roll the suit outwards and down the body such that the exterior side is rolled into itself and only the clean side of the suit is exposed. Only touch the inside (clean side) of the suit.

Step out of the suit and discard it into a waste bag for disposal or a plastic bag for laundering. If shoe covers are not attached to the suit, remove them by rolling the dirty side onto itself.

Step onto the tack mat several times to remove fugitive dust before stepping onto the flooring outside the work area. Note: The sticky mat is not intended to clean the bottom of the booties. They are designed to clean the bottom of the work boots/shoes after removing booties or full-body coveralls. When working in semi-restricted or restricted areas, put on clean protective clothing before entering the semi-restricted or restricted area located outside the negative pressure containment. Wash face, hands, and any exposed skin surfaces as soon as possible upon exiting containment. A wash station near the work area may be required for dusty work.

EQUIPMENT & WASTES

Decontaminate the exterior surface of all bagged waste, tools, or construction materials before the exit of the containment by wet wiping. Tools or materials that cannot be exposed to water may be thoroughly HEPA vacuumed before removal.

Contaminated construction materials, tools, or other reusable items contaminated with dirt or debris must be wrapped in 6 mil plastic sheeting or bags any time they are outside the containment and before covered cart transport. Insides of transport carts shall be maintained free and clean of dust and debris.

Nonporous/smooth and cleanable containers with a hard lid must be used to transport trash and debris from the construction areas. Before leaving the contained work area, these containers must be damp-wiped, cleaned, and free of visible dust/debris. Open carts or plastic-covered carts are unacceptable.

CONTAINMENT DESIGN & CONSTRUCTION

Containment is the primary engineering control to prevent patient exposure to contamination. Proper containment design and construction are necessary for proper function. The following sections are related to whole, negative pressure containments; alternative containment strategies are presented in the next section.

LOCATION

Nurse management must approve the containment location and configuration in patient care areas. Containment location concerning emergency egress must be reported to UCDH Fire Marshal's Office. An Interim Life Safety Measure (ILSM) plan may be required.

MATERIALS

Temporary containments in non-fire-rated locations lasting less than 30 days may be constructed of fire-rated polyethylene sheeting (at least six mil in thickness) that meets the standards specified by the UCDH Fire Marshal's Office. The polyethylene used for critical barriers and sealing walls, floors, or ceiling systems shall be a minimum of 6 mil thickness and fire-retardant type listed by Fire Underwriters Laboratories, Griffolyn #T55R with Griffolyn fire retardant tape, or equal, (no known equal).

Only approved one-hour fire-rated temporary containment systems that meet ASTM E84, Class A requirements for smoke and fire for fire-rated assemblies/enclosures shall be used. Only approved fire damper systems used to control smoke/fire in a fire-rated containment assembly shall be used.

Containments to remain in place for more than 30 days, those requiring additional security or those designed to control highly dusty environments, as in the case of abrasive blasting or concrete coring, shall be constructed of rigid, airtight materials, such as drywall and metal wall framing. A hard-sided containment with a lockable door shall be used when there are concerns about security or safety from unauthorized entry, especially if the containment will be left unattended for extended amounts of time.

Avoid creating tape damage on existing finish materials.

CONSTRUCTION

Locate the HEPA-filtered negative pressure unit as far away from the containment entrance (or other location of makeup air) as possible and duct the exhaust outdoors whenever feasible. Distancing the negative pressure unit from the source of makeup air helps to ensure complete and effective scrubbing of the contained airspace. Locating the unit too near the entrance can allow pockets of contamination to exist within the contained zone. At least four air changes per hour must be always provided within the negative pressure containment, which can be determined by the number of HEPA-filtered negative air unit scrubbers operating cubic feet per minute and the volume of the containment. All sources of air infiltration into the work zone must be sealed off before erecting containment barriers. These critical barriers include those over HVAC supply and return registers, electrical outlets, gaps in the drop-in ceilings, doorways not being used, etc.

All existing surfaces within the containment which are not to be disturbed during construction must be covered with polyethylene sheeting unless they are nonporous, smooth, and accessible for cleaning. Where floors are likely to be damaged by the construction activities, durable flooring (e.g., Plywood, Masonite) shall be installed over two layers of plastic sheeting.

Locate tack mats outside of the containment exit when possible. Otherwise, locate tack mats on the floor, just inside the containment exit. An additional tack mat may be useful for incredibly dusty projects. Expose a new tack sheet when tack mats are no longer sticky and again at the end of each shift. The use of wetted carpet mats is not acceptable.

When required, a manometer displaying the current containment pressure must be installed in an accessible location near the containment entrance.

NEGATIVE PRESSURE REQUIREMENTS

Negative pressure containments shall be a minimum of -0.020 inches of water column or less (-0.021, -0.022, -0.023....) relative to the adjacent, uncontained space. Exceptions to this requirement may be allowed by IP and will be listed on the ICRA permit. Demonstrate negative pressure is achieved continuously (24/7) through an electronic manometer sensitive to measure down to -0.020" wp. The manometer shall be capable of measuring the water pressure down to at least -0.001" in-WC. Inclined manometers using a liquid water solution and non-digital air pressure gauges are unacceptable since they do not meet the sensitivity of measuring -0.001" WC.

Zero pressure or positive pressure is unacceptable and must be responded to immediately. Locate and repair holes or breaches in the exterior containment system with tape. Secure zip poles if they have fallen. Close the entry door by zipping lower or closing the flaps and securing it. A pressure too negative (-0.060 inches of water column or less) can cause the containment to collapse inwards. To relieve too negative pressure, turn down the negative air machines, if possible, and increase the size of the containment door openings.

Manometer Reading	Why it's a problem	Response Options
Positive Pressure	Active contaminant	This is an emergency. Call Project Manager ASAP!
(+0.001 and greater)	ejection	
No pressure	Possible	Close zipper doors, Check and repair breaches, Ensure
(0.000)	contaminant	correct operation of negative air machines, and Call
	migration	Project Manager.
Too Negative	Could collapse	Lift the zipper on the containment and anteroom
(-0. 060 and less)	containment	door

ALTERNATIVE CONTAINMENT STRATEGIES

A full negative pressure enclosure is not always possible or warranted. Work may be completed using alternative containment strategies such as those listed below. IP may approve other alternative containment strategies on a case-by-case basis.

MOBILE CONTAINMENTS, AKA "CUBES"

Cubes are manufactured containment systems that are erected on a mobile platform. Examples are pictured on the following page. If they are used for Class III or IV work, they must conform to all Class III or IV ICRA permit requirements, including negative pressure, cleaning, inspection, required postings, etc.

Cubes are not typically inspected at the same frequency as fixed containments as the work is often of short duration and may occur in several locations throughout a single day.

The containment inspector shall conduct periodic, unannounced audits of cube work to ensure compliance with the ICRA and this best practice standard. Inspect cube operations two times or more for each ICRA permit issued. Projects longer than two weeks shall be audited at least twice per month. Where failures are located, corrective action must be taken immediately.



"GLOVE" BAGS OR BOXES & HEPA SHROUDS

Small projects may be accomplished by containing the work only - and not the workers. Glove bags, boxes, and HEPA shrouds can be used to complete work that disturbs small areas. Some examples of these systems are pictured on the following page.

EXAMPLES HEPA SHROUDED SYSTEMS

Projects commonly completed using these systems include drilling small penetrations, cutting in for wire receptacles, and placing backing plates for hanging objects from the wall. Because the containment cannot be posted, display the required postings (including the ICRA permit) in the work area.

Before first use, the design and construction of these types of containments shall be approved by IP and EH&S.

The glove bag or box should be composed of a sturdy frame enclosed in polyethylene or a transparent, sturdy material (e.g., plastic panel). Do not use corrugated materials, as they tend to collect and retain dust. A tested HEPA vacuum is used to maintain negative pressure within the glove bag/box. The bag/box must be cleaned before detachment. The negative pressure may be verified by observing the bowing of the bag/box sides, using visible smoke, tissue paper, or other means approved by EH&S.

Work utilizing these types of containments is typically very short in duration; therefore, inspections differ from those performed in fixed containments. Further, because these types of systems heavily rely on the work practices used, contractors must be strictly monitored, especially at the beginning of a project.

The containment inspector shall conduct periodic, unannounced audits of the work to ensure compliance with the ICRA permit and this best practice standard. Where failures are located, corrective action must be taken immediately, and EH&S must be notified immediately.

DEHUMIDIFICATION

Dry-out efforts using dehumidifiers are allowed if completed within 72 hours of initial wetting and are approved by EH&S and/or IP. If the duration of the wetting is unknown, additional measures must be performed to ensure no mold growth has occurred – consult with EH&S.

Dehumidification may only be used in clean water or steam condensate intrusion cases. Materials wetted by contaminated, black, or grey water require measures beyond dehumidification, ideally removal and replacement.

Dehumidification of voids such as wall or ceiling cavities must be done as a closed loop such that the space does not become positively pressured relative to patient care areas.

POSTINGS

All the following postings must be posted as soon as containment is constructed and thus maintained in the work area of a Class I-V permitted project:

- Copy of ICRA Permit
- Copy of Interim Life Safety Measure (ILSM) Permit
- Containment Inspection Log (See Appendix A)
- Entry Warning Sign with Project Manager Contact (See Appendix B)
- Building Permit (when required)

CLEANING PROCEDURES

Once all work has been completed within containment, use the following procedures to perform a final cleaning. Final cleaning must be verified and signed off by the containment inspector before removing the containment.

- Change into a clean disposable suit or clean clothing.
- Carefully HEPA Vacuum all surfaces. Use an appropriate attachment to ensure all large dust is removed. Vacuum slowly and pay special attention to cracks and crevices where dust may have accumulated.
- Prepare a measured solution of a UCDH-approved EPA-listed disinfectant (see UCDH Hospital Policy and Procedure 2111) and use it according to the instructions on the label.
- Using clean towels or sponges, wipe all surfaces with disinfectants. If visible dust accumulates
 on the applicator, wipe again until no residue is detected. Frequently change to clean
 applicators.
- Leave the surface wet and allow it to air dry. Do not wipe the surface dry.
- Remove the top floor layer, if present, and HEPA vacuum and wipe down the bottom floor layer.
- Call for a final visual inspection. The inspection will not be performed until the containment is dry.
- If the containment does not pass inspection, the entire containment must be re-cleaned using the steps outlined above before re-inspection.
- When containment passes inspection, remove the components, retain the documents for the project manager, and contact EVS for terminal cleaning of the project area.

DOCUMENTATION

The project manager shall retain all the following documents related to the containment:

- Copy of ICRA permit
- Containment Inspection Log (see Appendix A) and any Manometer Logs
- Copies of HEPA equipment certification
- Records of sampling conducted, if any
- Findings from project audits

 Documents should be retained until the project is completed and occupancy has been granted.

CONTAINMENT VERIFICATION

Periodic particle counting is recommended and may be required to ensure exhausted air meets the HEPA rating and ambient air near the project is not excessively loaded with particles, compared to baseline measurements collected before construction or measurements collected in areas deemed currently acceptable. Particle counters should be set up to log the collected data, and all sampling records must be provided to the project manager and EH&S.

INSPECTION CRITERIA

Inspections are required: at the initial containment setup to verify proper construction each day to ensure proper operation once all demolition has been completed, whenever an ICRA reclassification is requested, and when all work has been completed, and the containment has been cleaned. The requirements of each of these types of inspections follow.

INITIAL CONTAINMENT INSPECTION (AKA "PRE-START")

To ensure the containment is sufficient before the start of work, EH&S or the consultant shall check for the following and sign off on the posted "inspection documentation form" with their name and the date and time the pre-start inspection passed.

 time time pro-cital timeprocite passed
ILSM permit conditions are met (if applicable)
All equipment is free and clear of dust/debris or arrives wrapped in poly
A hard lid-covered cart is available for waste transport
HEPA-filtered equipment has passed inspection and is not expired
Protective clothing is available
HVAC is sealed off in the work area, and other critical barriers are in place
Containment is complete (no holes/gaps) and structurally sound
Negative pressure exhaust is located as far from containment entry as possible
Nonporous, non-cleanable surfaces not in the scope are covered in poly
Fixtures outside of the scope of work are covered or removed
Where floor damage may occur, durable floor protection is in place
Installed manometer displays sufficient negative pressure
Negative pressure exhaust is diffused/not directing high-velocity air onto occupants
All required postings are in place

INSPECTIONS WHILE WORKING

Containment inspections shall be performed twice per workday. Once at the beginning of the work shift, prior to work starting. Once at the end of the work shift, before closing up shop for the day. For projects of extended length when work activity is not being performed, including on weekends or holidays, and if the work area had a comprehensive surface cleaning and received a passing visual inspection by a qualified containment inspector or third-party environmental consultant, the daily inspections are not required. At a minimum, ICRA inspections shall be made weekly for containments on projects of extended non-work activity. Containment checks shall include the following. The containment inspector shall note observations on the "Containment Inspection Form" (see Appendix A) attached to the containment.

	ILSM permit conditions are met (if applicable)
	Containment remains complete (no holes/gaps/tears) and structurally sound
	No unauthorized personnel are inside
	All required postings are in place
	No changes to the location of the HEPA exhaust
	The Tack mat is present and usable
	No signs of track out are observed
	Installed manometer displays sufficient negative pressure
	Containment is generally clean
	Covered carts with hard lids are being used to transport equipment and wastes
	All ICRA permit conditions are met
IN-PRO	OGRESS INSPECTIONS (AKA "POST-DEMO")
To ensu	ure completion of the demolition phase of projects, the containment inspector shall verify the
followi	ng conditions and sign off on the containment documentation form with their name and the
date ar	nd time the inspection was completed.
	All wetted or hazardous materials have been removed entirely (May require using infrared
	cameras and/or moisture meters to verify remaining materials are dry).
	The demolition scope is complete
	No hazardous materials have been discovered
П	Containment is clean, and waste has been removed

ICRA CLASS CHANGE (AKA "ICRA DOWNGRADE")

At times, with the approval of IP, construction work may begin under ICRA Permit Class III, IV, or V and become reclassified to a lower ICRA Class once significant dust-producing activities have ceased. An inspection must take place before the downgrade to ensure that the dust-producing work is complete, the Class III or IV containment is clean, and the IP requirements of the ICRA permit downgrade are met. The containment must meet the criteria for a "final visual inspection" (see next section), except for all construction efforts being complete.

FINAL INSPECTION BEFORE DISMANTLEMENT (AKA "FINAL VISUAL")

No debris or waste present The Tack mat is clean

	· · · · · · · · · · · · · · · · · · ·
Once the	construction is complete, a containment inspector shall verify the following and document a
passing fir	nal inspection by signing the inspection log form attached to the containment, including the
date and t	ime the inspection passed. Before dismantling the containment, the Contractor shall collect
all posted	paperwork, including any manometer tapes, and deliver it to the Project Manager, who is
responsib	le for contacting EVS for the terminal cleaning.
All	construction efforts are completed
☐ No	tools, equipment, or personal belongings are present (clean ladder excepted)

The table below provides guidance for inspections needed during each phase of work.

Containment is "white glove" clean – no visible dust can be wiped from any surface

^{*}For projects impacting hazardous materials, all inspections except the "daily inspection" need to be completed by a third-party consultant.

	Initial Visual Inspection	Daily Inspection	Post-Demo	ICRA Class Change	Final Visual	Weekly Inspection
Projects with containment – including negative pressure and/or critical barriers	Х	Х	If demo done	If the ICRA class changes, such as a request for downgrade.	X	
Cube projects	At least once with first use of cube	Ad hoc (at least 2x per permit and 2x per month for longer projects)	If demo done	N/A	At least once, with completion of the use of cube	
Glove box projects	N/A	Ad hoc	N/A	N/A	N/A	
Inactive Projects	N/A	N/A	N/A	N/A		containments on projects of extended non- work activity

REFERENCES

The following sources were used to gather information for this policy.

Bartley, J. APIC State-of-the-Art Report: The role of infection control during construction in health care facilities. American Journal of Infection Control, 28(2):156–69.

Clair JD, Colatrella S. Opening Pandora's (tool) Box: health care construction and associated risk for nosocomial infection. Infect Disord Drug Targets. 2013 Jun;13(3):177-83.

Facilities Guideline Institute (2014). Guidelines for design and construction of hospitals and outpatient facilities. American Hospital Association.

Grota, P, et. al. (Eds.) (2014) APIC Text of Infection Control and Epidemiology. (4th Ed.) Association for Professionals in Infection Control and Epidemiology.

Kanamori H, Rutala WA, Sickbert-Bennett EE, Weber DJ. Review of fungal

outbreaks and infection prevention in healthcare settings during construction and renovation. Clin Infect Dis. 2015 Aug 1;61(3):433-44.

Kidd F, Buttner C, Kressel AB. Construction: a model program for infection control compliance. Am J Infect Control. 2007 Jun;35(5):347-50.

Public Health Agency of Canada. (2001) Construction-related nosocomial infections in patients in healthcare facilities: Decreasing the risk of aspergillus, legionella, and other infections. Ottawa, Ontario: Health Canada.

Rask D, Dziekan B, Swiencicki W, Heinsohn P, Walmsley D. (1998) Air quality control during renovation in health care facilities. In: Healthy buildings: solutions to global and regional concerns. Atlanta, GA: ASHRAE Inc Press; 1998.

Sehulster L, Chinn RY. (2003) Guidelines for environmental infection control in healthcare facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). Morbidity and Mortality Weekly Report – Recommendations and Reports, 2003, 52(RR-10):1-42.

Sendelbach S, Funk M. Alarm fatigue: a patient safety concern. AACN Adv Crit Care. 2013 Oct-Dec;24(4):378-86.

Vogel R, et. al. (2015). Infection prevention manual for construction and renovation. Association for Professionals in Infection Control and Epidemiology.

APPENDIX A: CONTAINMENT INSPECTION LOG

Permit Number:	UCDH Project Manager:	UCDH Project Manager Phone Number:
Project Number:	Project Name:	Alternate Contact:

				CONT	AIMENT	INSPE	CTION L	OG			
Type of Inspection Pre Start, Post Demo, Downgrade, Final or Work Day	Date & Time	Performed by (Name & Company)	Pressure Reading (+/-)	Acceptable Negative Pressure? (Yes/No)	ILSM conditions still met? (Yes/No or N/A)	Tack Mat useable? (Yes/No)	Interior free of dust and debris? (Yes/No)	Containment Integrity Intact? (Yes/No)	All ICRA permit conditions met? (Yes/No)	Other Issues? (Explain)	Corrective Actions
Example Work Day	01/13/23 0800	B. Clean ACME Construction	-0.025	Yes	N/A	Yes	Yes	No	Yes	No	Containment Breach; Patched
thursday start		DPR									
thursday finish		DPR	•								
weekend clean	dates	ENTEK	pressu readin								
monday start		DPR									

APPENDIX B: ENTRY WARNING SIGN WITH PROJECT MANAGER CONTACT

CONSTRUCTION NOTICE

Under Construction Do Not Enter

En Construcción No Entrar

FP&D Project	Number and N	Name:	

Project Contacts:

UCDH Project Manager

vario.
Phone:
Email:
Site Superintendent
Name:
Company:
Phone:
Email:
Construction Manager
Name:
Company:
Phone:
Email: