

1200 R St, Suite 100 Sacramento, CA 95811 (916) 787-5100 fax (916) 784-7738

4610 X STREET SACRAMENTO, CA 95817

UC Davis EDUCATION BUILDING IT NETWORK MODERNIZATION Structural Calculation

FACILITIES DESIGN & CONSTRUCTION 4800 2ND AVENUE SUITE 3010 SACRAMENTO, CALIFORNIA 95817

Commission No: 1500-163-01

Date: January 2024

APRIL 2024 BACKCHECK 1

This approval includes 47 pages.

TABLE OF CONTENTS

1.0	SEISMIC DESIGN PARAMETERS	.1
2.0	DETAIL 4/E7.05 EQUIPMENT RACK ANGHORAGE	2
3.0	DETAIL 1/E7.09 VERTIV 40 KVA MAX UPS 12HX205 ANCHORAGE	.13
4.0	DETAIL 1/E7.10 VERTIV UPS BYPASS CABINET 200 MM ANCHORAGE	24
△ € .5.0	DETAIL 1/E7.11 VERTIV BATTERY CABINET 12HX205 ANCHORAGE	35
<u>∕B1</u>		

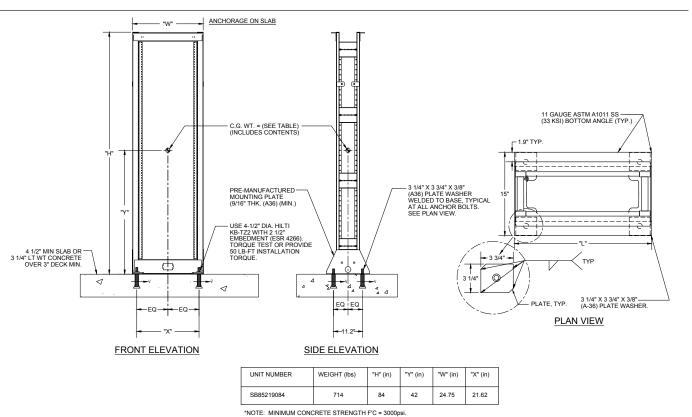
USGS web services were down for some period of time and as a result this tool wasn't operational, resulting in *timeout* error.

USGS web services are now operational so this tool should work as expected.

UCD Education Building

4610 X St, Sacramento, CA 95817, USA

Latitude, Longitude: 38.5530128, -121.4519666

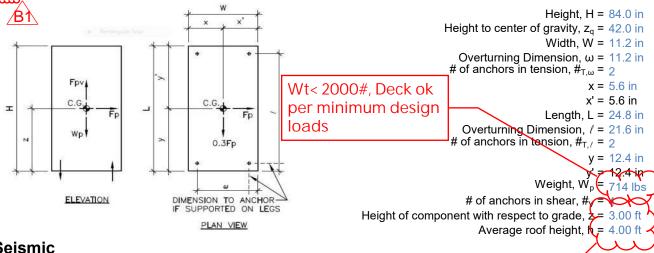

100)	Wap data @2024 Coogle
Date	1/2/2024, 12:34:18 PM
Design Code Reference Document	ASCE7-16
Risk Category	II
Site Class	D - Default (See Section 11.4.3)

Туре	Value	Description
S _S	0.547	MCE _R ground motion. (for 0.2 second period)
S ₁	0.247	MCE _R ground motion. (for 1.0s period)
S _{MS}	0.745	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	0.497	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Туре	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
Fa	1.362	Site amplification factor at 0.2 second
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.23	MCE _G peak ground acceleration
F _{PGA}	1.37	Site amplification factor at PGA
PGA _M	0.315	Site modified peak ground acceleration
TL	12	Long-period transition period in seconds
SsRT	0.547	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	0.574	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.247	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.262	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)

1200 R St, Suite 100 Sacramento, CA 95811 (916) 787-5100 fax (916) 784-7738 Commission No: 1500-163-01 UCD EB Net V2 **ENGR: ZL** January 2024

Detail 4/E7.05 Equipment Rack Anchorage


EQUIPMENT RACK - MOUNTED TO SLAB ON GRADE OR CONCRETE FILLED METAL DECK

Project: **UCD NetV2 Education Builing** Subject: Equipment Rack 4/E7.05 1500-163-01 Comm No.: Page:

Name: Date: Jan 2024

<u>Seismic</u>

Seismic design requirements for equipment are based on ASCE 7-16, Chapter 13.

COMPONENT AMPLIFICATION FACTOR

ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1

COMPONENT RESPONSE MODIFICATION FACTOR

ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1

DESIGN SPECTRAL RESPONSE ACCELERATION

COMPONENT IMPORTANCE FACTOR

ASCE Section 13.1.3

ATTACHMENT FACTOR IN CONCRETE OR MASONRY

ASCE Tables 13.5-1, 13.6-1

SEISMIC DESIGN FORCE

ASCE Section	13.3.1	& ASCE	Equation	13.3-1
ASCE Section	13.3.1	& ASCE	Equation	13.3-2
ASCE Section	13.3.1	& ASCE	Equation	13.3-3

SEISMIC DESIGN FORCES

ASCE Section 13.1.8 & 13.3.1 ASCE Section 13.1.8 & 13.3.1

DESIGN FORCES

$$F_{p,\Omega}$$
 = $Fp * W_p * \Omega$ factor = 473 lbs
 $OTM = z_q * F_{p,\Omega}$ = 19872 lb-in
 F_{pv} = 71 lbs
 $DLRM = (0.9W_p - F_{pv}) * x_{min}$ = 3201 lb-in

 $a_p = 1.0$

 $R_{\rm p} = 1.5$ $S_{DS} = 0.497$

$I_p = 1.00$

 Ω factor = 2.0

$$F_p = 0.4*a_p*S_{DS}*W_p/(R_p/I_p)(1+2z/h)$$
 $F_p = 0.331 Wp$

$$\begin{array}{lll} F_p = 0.4^* a_p ^* S_{DS}^* W_p / (R_p / I_p) (1 + 2z / h) & F_p = 0.331 \ Wp \\ F_{p.max} = 1.6^* S_{DS}^* I_p ^* W_p & F_{p,max} = 0.795 \ Wp \\ F_{p,min} = 0.3^* S_{DS}^* I_p ^* W_p & F_{p,min} = 0.149 \ Wp \end{array}$$

$$\begin{array}{ll} F_{p,} = F_{p,govern} & F_{p} = 0.331 \ Wp \\ F_{pv} = 0.2^{*}S_{DS}^{*}W_{p} & F_{pv} = 0.099 \ Wp \end{array}$$

T =
$$\frac{\text{OTM - DLRM}}{\omega^* \#_{T,\omega}} + \frac{0.3 * \text{OTM}}{\ell^* \#_{T,\ell}}$$
 T = 882 lbs

$$V = \frac{F_{p,\Omega} * (2 * y_{max} / L)}{\#_{V}}$$
 V = 118 lbs

www.hilti.com

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

Specifier's comments:

1 Input data

Metal deck: Verco W3 Formlok 3"

Metal deck type:

Anchor installation: On top of concrete-filled metal deck Anchor type and diameter: Kwik Bolt TZ2 - CS 1/2 (2) hnom2

Item number: 2210254 KB-TZ2 1/2x3 3/4

Effective embedment depth: $h_{ef.act}$ = 2.000 in., h_{nom} = 2.500 in.

Material: Carbon Steel ESR-4266 **Evaluation Service Report:**

Issued I Valid: 12/17/2021 | 12/1/2023

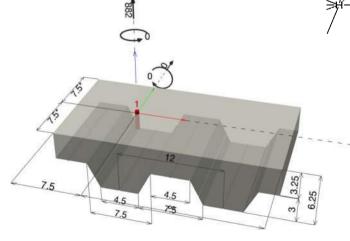
Proof: Design Method ACI 318-19 / Mech in concrete over metal deck installation

Stand-off installation:

Profile:

Base material: cracked lightweight concrete, Custom, f_c' = 3,500 psi; h = 3.250 in.

Installation: hammer drilled hole, Installation condition: Dry


Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) Tension load: yes (17.10.5.3 (d))

Shear load: yes (17.10.6.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 882; V_x = 118; V_y = 0;$	yes	86
		$M_x = 0$; $M_y = 0$; $M_z = 0$;		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 882 118 118 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity ♥ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	882	8,433	11	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	882	1,028	86	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

3.1 Steel Strength

N_{sa} = ESR value refer to ICC-ES ESR-4266 $\phi~N_{sa} \geq N_{ua}$ ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.10	114,004

Calculations

Results

N _{sa} [lb]	φ _{steel}	$\phi_{nonductile}$	φ N _{sa} [lb]	N _{ua} [lb]
11,244	0.750	1.000	8,433	882

3.2 Concrete Breakout Failure

 $N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \; \psi_{ed,N} \; \psi_{c,N} \; \psi_{cp,N} \; N_b$ ACI 318-19 Eq. (17.6.2.1a)

 $\phi \ \ N_{cb} \ge N_{ua}$ see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

 $\psi_{\text{ ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$ ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{cp,N} &= \text{MAX}\bigg(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\bigg) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{ef}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
2.000	7.500	1.000	7.500	21	0.600	3,500

Calculations

A _{Nc} [in. ²]	A_{Nc0} [in. ²]	$\psi_{\text{ ed},N}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
36 00	36 00	1 000	1 000	2 108

Results

N _{cb} [lb]	φ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ N _{cb} [lb]	N _{ua} [lb]
2,108	0.650	0.750	1.000	1,028	882

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	118	3,599	4	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	118	1,476	8	OK
Concrete edge failure in direction y-**	118	2,986	4	OK

4.1 Steel Strength

 $V_{sa,eq}$ = ESR value refer to ICC-ES ESR-4266 ϕ $V_{steel} \geq V_{ua}$ ACI 318-19 Table 17.5.2

Variables

_	A _{se,V} [in. ²]	f _{uta} [psi]	$\alpha_{\text{V,seis}}$	
	0.10	114.004	1.000	

Calculations

V_{sa,eq} [lb] 5,537

Results

$V_{sa,eq}$ [lb]	ϕ_{steel}	$\phi_{nonductile}$	φ V _{sa,eq} [lb]	V _{ua} [lb]	
5,537	0.650	1.000	3,599	118	

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

4.2 Pryout Strength

 $V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$ ACI 318-19 Eq. (17.7.3.1a) ACI 318-19 Table 17.5.2 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)
$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5 h_{\text{ef}}} \right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5 h_{\text{ef}}}{c_{\text{ac}}} \right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.4.1b) ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\psi_{\text{ c,N}}$
1	2.000	7.500	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]
7.500	21	0.600	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed,N}}$	$\Psi_{cp,N}$	N _b [lb]
36.00	36.00	1 000	1 000	2 108

Results

V _{cp} [lb]	$\phi_{ m concrete}$	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cp} [lb]	V _{ua} [lb]
2,108	0.700	1.000	1.000	1,476	118

www.hilti.com

Company: Page: Address: Specifier: . E-Mail: Phone I Fax:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

4.3 Concrete edge failure in direction y-

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1a)
$\phi V_{cb} \geq V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V = \left(\frac{1}{2} \left(\frac{1}{e}\right)^{0.2}, \frac{1}{\sqrt{e}}\right)^{0.2} \sqrt{\frac{1}{e}} c^{1.5}$	ΔCI 318-10 Fg. (17.7.2.2.1a)

 $= \left(7 \left(\frac{I_e}{d_a}\right) \quad \sqrt{d_a}\right) \lambda_a \quad \sqrt{f_c} c_{a1}^{1.5}$

ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	$\Psi_{c,V}$	h _a [in.]	l _e [in.]
7.500	7.500	1.000	3.250	2.000
•		ć r		
^ ^ a	d _a [in.]	f _c [psi]	ψ parallel,V	
0.600	0.500	3,500	2.000	

Calculations

A_{Vc} [in. ²]	A_{Vc0} [in. ²]	$\psi_{\text{ ed,V}}$	$\psi_{\text{h,V}}$	V _b [lb]
60.94	253.12	1.000	1.861	4,762

Results

V _{cb} [lb]	♦ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cb} [lb]	V _{ua} [lb]
4,266	0.700	1.000	1.000	2,986	118

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_{N}	β_{V}	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.858	0.080	1.000	79	OK	

 $\beta_{NV} = (\beta_N + \beta_V) / 1.2 <= 1$

		4:		
www	.nı	ITI.	ററ	m

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	1/2/2024
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

7 Installation data

Anchor type and diameter: Kwik Bolt TZ2 - CS 1/2 (2)

8

hnom2

Profile: - Item number: 2210254 KB-TZ2 1/2x3 3/4
Hole diameter in the fixture: - Maximum installation torque: 602 in.lb
Plate thickness (input): - Hole diameter in the base material: 0.500 in.
Hole depth in the base material: 2.750 in.

Drilling method: Hammer drilled Minimum thickness of the base material: 3.250 in.

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Hilti KB-TZ2 stud anchor with 2.5 in embedment, 1/2 (2) hnom2, Carbon steel, installation per ESR-4266

7.1 Recommended accessories

 Drilling
 Cleaning
 Setting

 • Suitable Rotary Hammer
 • Manual blow-out pump
 • Torque controlled cordless impact tool

Properly sized drill bit

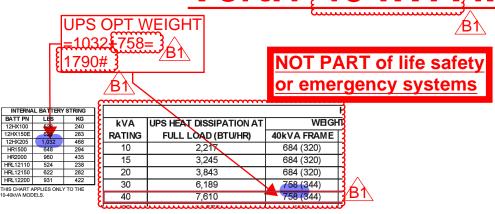
Torque wrenchHammer

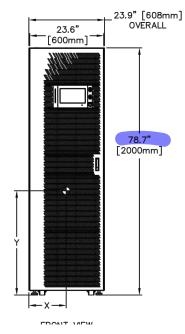
Coordinates Anchor in.

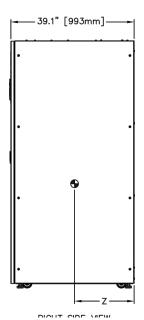
Anchor	X	у	C _{-x}	C+x	c _{-y}	c _{+y}	
1	0.000	0.000	7.500	-	7.500	7.500	

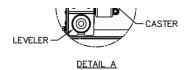
www	hi	lti	റവ	m

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	1/2/2024
Fastening point:			

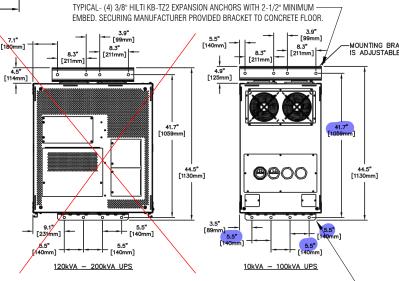

8 Remarks; Your Cooperation Duties


- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.


HGA

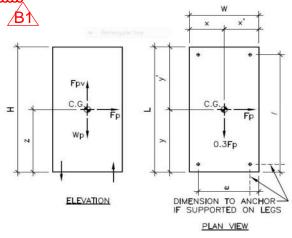

1200 R St, Suite 100 Sacramento, CA 95811 (916) 787-5100 fax (916) 784-7738 Commission No: 1500-163-01 UCD EB Net V2 ENGR: ZL Mar 2024

Detail 1/E7.09 Vertiv 40 kVA MAX UPS



UPS kVA RATING	CENTER OF GRAVITY in(mm)			
UPS KVA KATING	X	Y	Z	
10 - 20	11.8"(300mm)	33.1"(840mm)	18.9"(480mm)	
30 - 40	11.8"(300mm)	33.1"(840mm)	18.9"(480mm)	

TYPICAL- (4) 3/8" HILTI KB-TZ2 EXPANSION ANCHORS WITH 2-1/2" MINIMUM — EMBED. SECURING MANUFACTURER PROVIDED BRACKET TO CONCRETE FLOOR.



Project: **UCD NetV2 Education Builing** Subject: Vertiv EXM 40 kVA UPS

1500-163-01 of Mar 2024 Comm No.: Page: Name: Date:

2022 CBC & ASCE 7-16 EQUIP ANCHORAGE FORCES (LRFD) -

Height, H = 79.0 in Height to center of gravity, $z_q = 33.1$ in Width, W = 16.5 in Overturning Dimension, $\omega = 16.5$ in

of anchors in tension, $\#_{T,\omega} = 2$

x' = 8.3 in

Length, L = 41.7 in

Overturning Dimension, $\ell = 41.7$ in # of anchors in tension, $\#_{T,\ell} = 2$

y = 20.9 in

Wt< 2000#, Deck ok per minimum design loads y' = 20.9 inWeight, W_p = 1790 lbs

of anchors in shear,

Height of component with respect to grade, >= 3.00 ftAverage roof height, \(\frac{1}{2} = 4.00 \) ft

<u>Seismic</u>

Seismic design requirements for equipment are based on ASCE 7-16, Chapter 13.

COMPONENT AMPLIFICATION FACTOR

ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1

COMPONENT RESPONSE MODIFICATION FACTOR

ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1

DESIGN SPECTRAL RESPONSE ACCELERATION

COMPONENT IMPORTANCE FACTOR

ASCE Section 13.1.3

ATTACHMENT FACTOR IN CONCRETE OR MASONRY

ASCE Tables 13.5-1, 13.6-1

SEISMIC DESIGN FORCE

SEISMIC DESIGN FORCES

ASCE Section 13.1.8 & 13.3.1 ASCE Section 13.1.8 & 13.3.1

DESIGN FORCES

$$F_{p,\Omega} = Fp * W_p * \Omega \text{ factor} = 712 \text{ lbs}$$

$$OTM = z_q * F_{p,\Omega} = 23557 \text{ lb-in}$$

$$F_{pv} = 178 \text{ lbs}$$

$$DLRM = (0.9W_p - F_{pv}) * x_{min} = 11823 \text{ lb-in}$$

Level 4 of 4 story building

 $a_p = 1.0$

 $R_{\rm p} = 2.5$

 $S_{DS} = 0.497$

$I_p = 1.00$

 Ω factor = 2.0

$$\begin{aligned} F_p &= 0.4 * a_p * S_{DS} * W_p / (R_p / I_p) (1 + 2z / h) & F_p &= 0.199 \text{ Wp} \\ F_{p.max} &= 1.6 * S_{DS} * I_p * W_p & F_{p,min} &= 0.3 * S_{DS} * I_p * W_p & F_{p,min} &= 0.149 \text{ Wp} \end{aligned}$$

$$\begin{aligned} F_{p,} &= F_{p,govern} & F_{p} &= 0.199 \text{ Wp} \\ F_{pv} &= 0.2^{*}S_{DS}^{*}W_{p} & F_{pv} &= 0.099 \text{ Wp} \end{aligned}$$

T =
$$\frac{\text{OTM - DLRM}}{\omega^* \#_{T,\omega}} + \frac{0.3 * \text{OTM}}{\ell^* \#_{T,\ell}}$$
 T = 440 lbs

$$V = \frac{F_{p,\Omega} * (2 * y_{max} / L)}{\#_{V}}$$
 V = 178 lbs

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024

Fastening point:

Specifier's comments:

1 Input data

Metal deck: Verco W3 Formlok 3"

Metal deck type: W

Anchor installation: On top of concrete-filled metal deck

Anchor type and diameter: Kwik Bolt TZ2 - CS 3/8 (2) hnom2

Item number: 2210236 KB-TZ2 3/8x3

Effective embedment depth: $h_{efact} = 2.000 \text{ in., } h_{nom} = 2.500 \text{ in.}$

Material: Carbon Steel
Evaluation Service Report: ESR-4266

Issued I Valid: 12/17/2021 | 12/1/2023

Proof: Design Method ACI 318-19 / Mech in concrete over metal deck installation

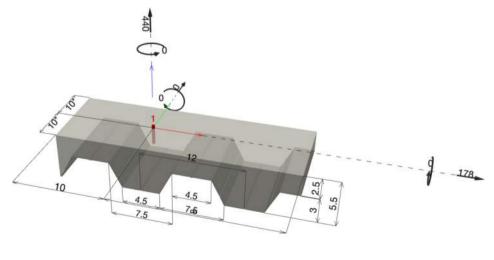
Stand-off installation:

Profile:

Base material: cracked lightweight concrete, Custom, f_c ' = 3,000 psi; h = 2.500 in.

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present


edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F)

Tension load: yes (17.10.5.3 (d))

Shear load: yes (17.10.6.3 (c))

Geometry [in.] & Loading [lb, in.lb]

×

Page 15

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024

Fastening point:

1.1 Design results

_	Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
	1	Combination 1	$N = 440$; $V_x = 178$; $V_y = 0$;	yes	47
			$M_{} = 0$: $M_{} = 0$: $M_{-} = 0$:		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	440	178	178	0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity ♥ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	440	4,869	10	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	440	952	47	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page: 3 Specifier: Address: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024 Fastening point:

3.1 Steel Strength

N_{sa} = ESR value refer to ICC-ES ESR-4266 $\phi~N_{sa} \geq N_{ua}$ ACI 318-19 Table 17.5.2

Variables

A_{se,N} [in.²] f_{uta} [psi] 126.204

Calculations

N_{sa} [lb] 6,493

Results

N_{sa} [lb] φ N_{sa} [lb] N_{ua} [lb] 6,493 0.750 1.000 4.869 440

3.2 Concrete Breakout Failure

 $N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$ ACI 318-19 Eq. (17.6.2.1a) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

 $\psi_{\text{ ed,N}} \, = 0.7 \, + 0.3 \, \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) \, \leq 1.0$ ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{cp,N} &= \text{MAX}\bigg(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\bigg) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{ef}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b) ACI 318-19 Eq. (17.6.2.2.1)

Variables

 $\lambda_{\,a}$ f_c [psi] c_{a,min} [in.] h_{ef} [in.] $\Psi_{c,N}$ cac [in.] 2.000 10.000 1.000 8.000 0.600 3,000

Calculations

A_{Nc} [in.²] A_{Nc0} [in.²] $\psi_{\text{ ed},N}$ $\psi_{\text{cp},N}$ N_b [lb] 36.00 36.00 1.000 1.000 1,952

Results

 φ_{seismic} $\phi_{\text{nonductile}}$ N_{cb} [lb] φ concrete ϕ N_{cb} [lb] N_{ua} [lb] 1,952 0.650 0.750 1.000 952 440

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024
Fastening point:

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	178	2,201	9	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	178	1,366	14	OK
Concrete edge failure in direction y-**	178	2,965	7	OK

4.1 Steel Strength

 $V_{sa,eq}$ = ESR value refer to ICC-ES ESR-4266 ϕ $V_{steel} \geq V_{ua}$ ACI 318-19 Table 17.5.2

Variables

_	A _{se,V} [in. ²]	f _{uta} [psi]	$\alpha_{\text{V,seis}}$	
	0.05	126.204	1.000	

Calculations

V_{sa,eq} [lb] 3,386

Results

V _{sa,eq} [lb]	ϕ_{steel}	$\phi_{nonductile}$	φ V _{sa,eq} [lb]	V _{ua} [lb]
3,386	0.650	1.000	2,201	178

Page 18

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024

Fastening point:

4.2 Pryout Strength

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-19 Eq. (17.7.3.1a)
$\phi V_{cp} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)

 $N_b = k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$

ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\psi_{\text{ c,N}}$
1	2.000	10.000	1.000
c _{ac} [in.]	k _c	λ_{a}	f _c [psi]
8.000	21	0.600	3,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},N}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
36.00	36.00	1.000	1.000	1,952

Results

V _{cp} [lb]	φ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cp} [lb]	V _{ua} [lb]
1,952	0.700	1.000	1.000	1,366	178

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:
Period: Metal deak Jan 2, 2024

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024
Fastening point:

4.3 Concrete edge failure in direction y-

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1a)
$\phi V_{cb} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	$\Psi_{c,V}$	h _a [in.]	l _e [in.]
10.000	10.000	1.000	2.500	2.000
		2.2		
λ _a	d _a [in.]	f _c [psi]	ψ parallel,V	
0.600	0.375	3,000	2.000	

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	$\Psi_{ed,V}$	$\Psi_{h,V}$	V _b [lb]	
62.50	450.00	1.000	2.449	6,226	
Results					
V _{cb} [lb]	φ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cb} [lb]	V _{ua} [lb]

1.000

2,965

178

5 Combined tension and shear loads, per ACI 318-19 section 17.8

0.700

β_{N}	$\beta_{\sf V}$	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.462	0.130	5/3	31	OK	

1.000

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

4,236

www	hi	lti	റവ	m

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	3/25/2024
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
 concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout
 or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024

Fastening point:

7 Installation data

Anchor type and diameter: Kwik Bolt TZ2 - CS 3/8 (2)

8

hnom2

Profile: -Item number: 2210236 KB-TZ2 3/8x3 Hole diameter in the fixture: -Maximum installation torque: 361 in.lb Plate thickness (input): -Hole diameter in the base material: 0.375 in. Hole depth in the base material: 2.500 in.

Drilling method: Hammer drilled Minimum thickness of the base material: 2.500 in.

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Hilti KB-TZ2 stud anchor with 2.5 in embedment, 3/8 (2) hnom2, Carbon steel, installation per ESR-4266

7.1 Recommended accessories

Drilling Setting Cleaning

 Suitable Rotary Hammer · Manual blow-out pump


· Properly sized drill bit Hammer

Coordinates Anchor in.

Anchor	x	у	C _{-x}	C+x	C _{-y}	C _{+y}	_
1	0.000	0.000	10 000	_	10 000	10 000	

• Torque controlled cordless impact tool

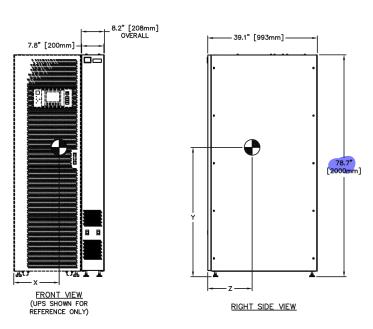
· Torque wrench

www.hi	IITI	.co	m
--------	------	-----	---

Company:		Page:	g
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	3/25/2024
Fastening point:			

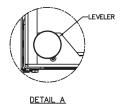
8 Remarks; Your Cooperation Duties

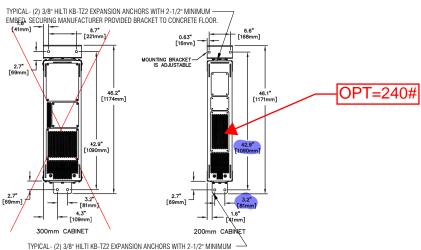
- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.



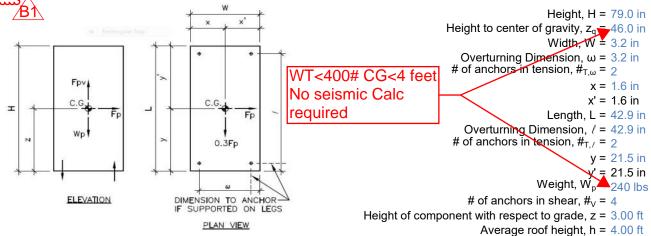
1200 R St, Suite 100 Sacramento, CA 95811 (916) 787-5100 fax (916) 784-7738 Commission No: 1500-163-01 UCD EB Net V2 ENGR: ZL January 2024

Detail 1/E7.10 Vertiv UPS BYPASS Cabinet 200 mm




NOT PART of life safety or emergency systems

EMBED. SECURING MANUFACTURER PROVIDED BRACKET TO CONCRETE FLOOR.



Project: **UCD NetV2 Education Builing** Subject: Vertiv UPS Bypass Cabinet

1500-163-01 Comm No.: Page: Mar 2024 Name: Date:

<u>Seismic</u>

Seismic design requirements for equipment are based on ASCE 7-16, Chapter 13.

COMPONENT AMPLIFICATION FACTOR

ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1 $a_p = 1.0$

COMPONENT RESPONSE MODIFICATION FACTOR

 $R_{\rm p} = 2.5$ ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1

DESIGN SPECTRAL RESPONSE ACCELERATION

 $S_{DS} = 0.497$

COMPONENT IMPORTANCE FACTOR

ASCE Section 13.1.3 $I_p = 1.00$

ATTACHMENT FACTOR IN CONCRETE OR MASONRY

ASCE Tables 13.5-1, 13.6-1 Ω factor = 2.0

SEISMIC DESIGN FORCE

$$\begin{split} F_p &= 0.4^* a_p^* S_{DS}^* W_p / (R_p / I_p) (1 + 2z / h) \\ F_{p.max} &= 1.6^* S_{DS}^* I_p^* W_p \end{split}$$
 $F_p = 0.199 \text{ Wp}$ ASCE Section 13.3.1 & ASCE Equation 13.3-1 $F_{p,max} = 0.795 \text{ Wp}$ ASCE Section 13.3.1 & ASCE Equation 13.3-2 $F_{p,min} = 0.3*S_{DS}*I_{p}*W_{p}$ $F_{p,min} = 0.149 \text{ Wp}$ ASCE Section 13.3.1 & ASCE Equation 13.3-3

SEISMIC DESIGN FORCES

 $F_{p,} = F_{p,govern}$ $F_{pv} = 0.2*S_{DS}*W_{p}$ ASCE Section 13.1.8 & 13.3.1 $F_p = 0.199 \text{ Wp}$ $F_{pv} = 0.099 \text{ Wp}$ ASCE Section 13.1.8 & 13.3.1

DESIGN FORCES

 $T = \frac{OTM - DLRM}{\omega * \#_{T,\omega}} + \frac{0.3 * OTM}{\ell * \#_{T,\omega}}$ $F_{p,\Omega} = Fp * W_p * \Omega$ factor = 95 lbs 653 lbs OTM = $z_q * F_{p,\Omega} = 4390 \text{ lb-in}$ $F_{pv} = 24 lbs$ DLRM = $(0.9W_p - F_{pv}) * x_{min} = 307 \text{ lb-in}$

$$V = \frac{F_{p,\Omega} * (2 * y_{max} / L)}{\#_{V}}$$
 V = 24 lbs

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

Specifier's comments:

1 Input data

Metal deck: Verco W3 Formlok 3"

Metal deck type: W1

Anchor installation: On top of concrete-filled metal deck

Anchor type and diameter: Kwik Bolt TZ2 - CS 3/8 (2) hnom2

Item number: 2210236 KB-TZ2 3/8x3

Effective embedment depth: $h_{efact} = 2.000 \text{ in., } h_{nom} = 2.500 \text{ in.}$

Material: Carbon Steel
Evaluation Service Report: ESR-4266

Issued I Valid: 12/17/2021 | 12/1/2023

Proof: Design Method ACI 318-19 / Mech in concrete over metal deck installation

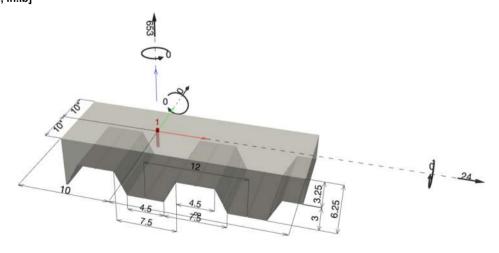
Stand-off installation:

Profile:

Base material: cracked lightweight concrete, Custom, f_c ' = 3,500 psi; h = 3.250 in.

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present


edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F)

Tension load: yes (17.10.5.3 (d))

Shear load: yes (17.10.6.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Page 26

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

Fastening point:

1.1 Design results

Ca	se	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1		Combination 1	$N = 653; V_x = 24; V_y = 0;$	yes	64
			$M_{} = 0$: $M_{} = 0$: $M_{-} = 0$:		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	653	24	24	0

3 Tension load

	Load N _{ua} [lb]	Capacity ♥ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	653	4,869	14	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	653	1,028	64	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

Page 27

2

www.hilti.com

Company:		Page:
Address:		Specifier:
Phone I Fax:	I	E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024
Fastening point:

3

3.1 Steel Strength

N_{sa}	= ESR value	refer to ICC-ES ESR-4266
φN _s	$_{a} \geq N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.05	126,204

Calculations

Results

N _{sa} [lb]	ϕ_{steel}	$\phi_{nonductile}$	φ N _{sa} [lb]	N _{ua} [lb]
6,493	0.750	1.000	4,869	653

3.2 Concrete Breakout Failure

_	
$N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1a)
$\phi N_{cb} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5h_{\text{ef}}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{\text{a,min}}}{C_{\text{c,r}}}, \frac{1.5h_{\text{ef}}}{C_{\text{c,r}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)

 $N_{\rm b} = k_{\rm c} \ \lambda_{\rm a} \ \sqrt{f_{\rm c}} \ h_{\rm ef}^{1.5}$ ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
2.000	10.000	1.000	6.000	21	0.600	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed,N}}$	$\psi_{\text{cp},N}$	N _b [lb]
36.00	36.00	1.000	1.000	2,108

Results

N _{cb} [lb]	$\phi_{\text{ concrete}}$	$\phi_{seismic}$	$\phi_{nonductile}$	φ N _{cb} [lb]	N _{ua} [lb]
2,108	0.650	0.750	1.000	1,028	653

Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Page 28

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024
Fastening point:

4

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	24	2,201	2	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	24	1,476	2	OK
Concrete edge failure in direction y-**	24	3,652	1	OK

4.1 Steel Strength

 $V_{sa,eq}$ = ESR value refer to ICC-ES ESR-4266 ϕ $V_{steel} \geq V_{ua}$ ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	$\alpha_{\text{V,seis}}$
0.05	126.204	1.000

Calculations

V_{sa,eq} [lb] 3,386

Results

V _{sa,eq} [lb]	ϕ_{steel}	$\phi_{nonductile}$	φ V _{sa,eq} [lb]	V _{ua} [lb]
3,386	0.650	1.000	2,201	24

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Page 29

www.hilti.com

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024 Fastening point:

4.2 Pryout Strength

 $V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$ ACI 318-19 Eq. (17.7.3.1a) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4) ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{ed,N} &= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}}\right) \leq 1.0 \\ \psi_{cp,N} &= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{ef}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b) ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\psi_{\text{c,N}}$
1	2.000	10.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]
6.000	21	0.600	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed,N}}$	$\Psi_{cp,N}$	N _b [lb]
36.00	36.00	1 000	1 000	2 108

Results

V _{cp} [lb]	$\phi_{ m concrete}$	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cp} [lb]	V _{ua} [lb]
2,108	0.700	1.000	1.000	1,476	24

www.hilti.com

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	

Fastening point:

4.3 Concrete edge failure in direction y-

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1a)
$\phi V_{cb} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{I_{e}}{d}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	$\Psi_{c,V}$	h _a [in.]	l _e [in.]
10.000	10.000	1.000	3.250	2.000
		2.2.2		
λ _a	d _a [in.]	f _c [psi]	ψ parallel,V	
0.600	0.375	3,500	2.000	

Calculations

A _{Vc} [ın.]	A _{Vc0} [in.]	$\Psi_{ed,V}$	$\Psi_{h,V}$	V _b [lb]
81.25	450.00	1.000	2.148	6,725
Results				
tesuits				
	4	4	4	1 37 50 5

	١/	г

V _{cb} [lb]	φ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cb} [lb]	V _{ua} [lb]
5,217	0.700	1.000	1.000	3,652	24

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_{N}	β_{V}	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.635	0.016	5/3	48	OK	

$$\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$$

6

1/2/2024

www.hi	IITI	.co	m
--------	------	-----	---

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	1/2/2024
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
 concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout
 or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Fastening point:

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 1/2/2024

7 Installation data

Anchor type and diameter: Kwik Bolt TZ2 - CS 3/8 (2)

8

hnom2

Profile: - Item number: 2210236 KB-TZ2 3/8x3

Hole diameter in the fixture: - Maximum installation torque: 361 in.lb

Plate thickness (input): - Hole diameter in the base material: 0.375 in.

Hole depth in the base material: 2.500 in.

Drilling method: Hammer drilled Minimum thickness of the base material: 2.500 in.

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Hilti KB-TZ2 stud anchor with 2.5 in embedment, 3/8 (2) hnom2, Carbon steel, installation per ESR-4266

7.1 Recommended accessories

DrillingCleaningSetting• Suitable Rotary Hammer• Manual blow-out pump• Torque controlled cordless impact tool

· Properly sized drill bit

Torque wrench
 Hammer

Coordinates Anchor in.

Anchor	x	у	C _{-x}	C+x	C _{-y}	C _{+y}	_
1	0.000	0.000	10 000	_	10 000	10 000	

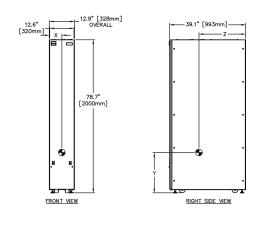
Page 33

www.h	ıilti	.com	1
-------	-------	------	---

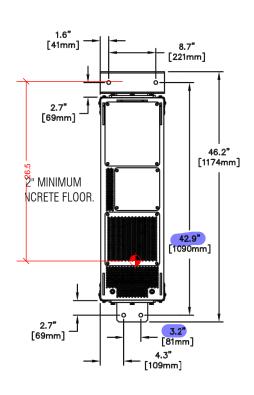
Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	1/2/2024
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.


1200 R St, Suite 100 Sacramento, CA 95811 (916) 787-5100 fax (916) 784-7738 Commission No: 1500-163-01 UCD EB Net V2 ENGR: ZL April 2024

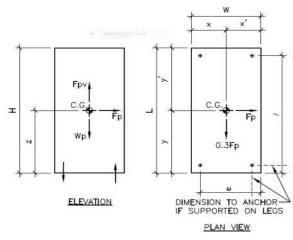
Detail 1/E7.11 Vertiv Battery Cabinet 12HX205


NOT PART of life safety or emergency systems

BATTERY CABINET CIRCUIT BREAKER SCHEDULE						
CABINET	AF/AT	IR SETTING	II SETTING	MFG	MFGPN	
320mm	225/225	NA	2250	ABB	XT4NU3225AFF000	
600mm	225/225	NA	NA	ABB	XT4NU3225AFF000	
600mm	600/465	MED/MIN	3000	ABB	T6N600TWAS2	
880mm	225/225	NA	NA	ABB	XT4NU3225AFF000	
880mm	600/465	MED/MIN	3000	ABB	T6N600TWAS2	

WEIGHT INFORMATION							
CABINET	kVA	BATTERY	BATTERY	BATT	W⊟GHT,	LBS (KG)	
WIDTH	RATING	MFG	M ODEL NO.	CODE	UNPACKED	PACKED	
	ENERSY S	12HX150E-FR	HX	1,082 (491)	1,107 (548)		
		ENERSYS	12HX205-FR	MX	1,432 (650)	1,557 (707)	
		EAST PENN	HR1500	GA	1,106 (502)	1,231 (559)	
320mm	10-40	EAST PENN	HR2000	LA	1,360 (617)	1,485 (674)	
		CSB	HRL12110	FC	1,090 (494)	1,215 (551)	
		CSB	HRL12150	HC	1,207 (547)	1,332 (604)	
		CSB	HRL12200	MC	1,485 (674)	1,610 (730)	

BATTERY TYPE	CENTER OF GRAVITY in(mm)				
BATIERT TIPE	X	Y	Z		
ENERSYS 12HX150E	6.5" (165mm)	21.1" (536mm)	25.0" (635mm)		
ENERSYS 12HX205	6.5" (165mm)	20.7" (526mm)	24.6" (625mm)		



Project: **UCD NetV2 Education Builing** Subject: Vertiv EXM Battery Cabinet 1500-163-01 Page: Comm No.:

Name: Date: Jan 2024

2022 CBC & ASCE 7-16 EQUIP ANCHORAGE FORCES (LRFD) -

Height, H = 79.0 in Height to center of gravity, $z_q = 20.7$ in Width, W = 12.9 in

Overturning Dimension, $\omega = 4.3$ in # of anchors in tension, $\#_{T,\omega} = 2$

> x = 6.5 inx' = 6.5 in

Length, L = 42.9 in

Overturning Dimension, $\ell = 42.9$ in

of anchors in tension, $\#_{T,\ell} = 2$

y = 26.5 in

y' = 16.4 inWeight, Wp → 1432 lbs

of anchors in shear,

Height of component with respect to grade, >= 3.00 ft

Average roof height, \(\frac{1}{2} = 4.00 \) ft

<u>Seismic</u>

Seismic design requirements for equipment are based on ASCE 7-16, Chapter 13.

COMPONENT AMPLIFICATION FACTOR

ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1

COMPONENT RESPONSE MODIFICATION FACTOR

ASCE Section 13.5, 13.6 & ASCE Table 13.5-1, 13.6-1

DESIGN SPECTRAL RESPONSE ACCELERATION

COMPONENT IMPORTANCE FACTOR ASCE Section 13.1.3

ATTACHMENT FACTOR IN CONCRETE OR MASONRY

ASCE Tables 13.5-1, 13.6-1

SEISMIC DESIGN FORCE

ASCE Section 13.3.1 & ASCE Equation 13.3-1 ASCE Section 13.3.1 & ASCE Equation 13.3-2 ASCE Section 13.3.1 & ASCE Equation 13.3-3

SEISMIC DESIGN FORCES

ASCE Section 13.1.8 & 13.3.1 ASCE Section 13.1.8 & 13.3.1

DESIGN FORCES

$$F_{p,\Omega}$$
 = $Fp * W_p * \Omega$ factor = 569 lbs
OTM = $z_q * F_{p,\Omega}$ = 11786 lb-in F_{pv} = 142 lbs
DLRM = $(0.9W_p - F_{pv}) * x_{min}$ = 7395 lb-in

Level 4 of 4 story building

Wt< 2000#, Deck ok per minimum

design loads

$$a_p = 1.0$$

$$R_p = 2.5$$

$S_{DS} = 0.497$

$I_p = 1.00$

$$\Omega$$
 factor = 2.0

$$\begin{aligned} F_p &= 0.4^* a_p * S_{DS} * W_p / (R_p / I_p) (1 + 2z / h) & F_p &= 0.199 \text{ Wp} \\ F_{p.max} &= 1.6^* S_{DS} * I_p * W_p & F_{p,min} &= 0.3^* S_{DS} * I_p * W_p & F_{p,min} &= 0.149 \text{ Wp} \end{aligned}$$

$$F_{p,} = F_{p,govern}$$
 $F_{p} = 0.199 \text{ Wp}$ $F_{pv} = 0.2*S_{DS}*W_{p}$ $F_{pv} = 0.099 \text{ Wp}$

T =
$$\frac{\text{OTM - DLRM}}{\omega * \#_{T,\omega}} + \frac{0.3 * \text{OTM}}{\ell * \#_{T,\ell}}$$
 T = 552 lbs

$$V = \frac{F_{p,\Omega} * (2 * y_{max} / L)}{\#_{V}}$$
 V = 176 lbs

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024

Fastening point:

Specifier's comments:

1 Input data

Metal deck: Verco W3 Formlok 3"

Metal deck type: W

Anchor installation: On top of concrete-filled metal deck

Anchor type and diameter: Kwik Bolt TZ2 - CS 3/8 (2) hnom2

Item number: 2210236 KB-TZ2 3/8x3

Effective embedment depth: $h_{efact} = 2.000 \text{ in., } h_{nom} = 2.500 \text{ in.}$

Material: Carbon Steel
Evaluation Service Report: ESR-4266

Issued I Valid: 12/17/2021 | 12/1/2023

Proof: Design Method ACI 318-19 / Mech in concrete over metal deck installation

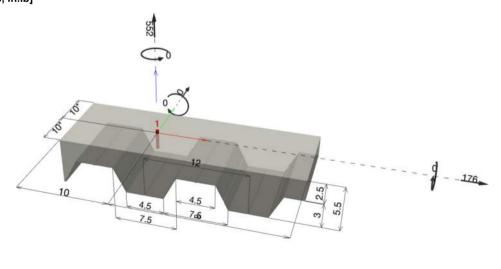
Stand-off installation:

Profile:

Base material: cracked lightweight concrete, Custom, f_c ' = 3,000 psi; h = 2.500 in.

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present


edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F)

Tension load: yes (17.10.5.3 (d))

Shear load: yes (17.10.6.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 552; V_x = 176; V_y = 0;$	yes	59
		$M_x = 0$; $M_v = 0$; $M_z = 0$;		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	552	176	176	0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity P N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	552	4,869	12	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	552	952	59	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page: 3 Specifier: Address: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024 Fastening point:

3.1 Steel Strength

N_{sa} = ESR value refer to ICC-ES ESR-4266 $\phi~N_{sa} \geq N_{ua}$ ACI 318-19 Table 17.5.2

Variables

A_{se,N} [in.²] f_{uta} [psi] 126.204

Calculations

N_{sa} [lb] 6,493

Results

N_{sa} [lb] φ N_{sa} [lb] N_{ua} [lb] 6,493 0.750 1.000 4.869 552

3.2 Concrete Breakout Failure

 $N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$ ACI 318-19 Eq. (17.6.2.1a) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

 $\psi_{\text{ ed,N}} \, = 0.7 \, + 0.3 \, \left(\frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) \, \leq 1.0$ ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{cp,N} &= \text{MAX}\bigg(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\bigg) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{ef}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b) ACI 318-19 Eq. (17.6.2.2.1)

Variables

 $\lambda_{\,a}$ f_c [psi] c_{a,min} [in.] h_{ef} [in.] $\Psi_{c,N}$ cac [in.] 2.000 10.000 1.000 8.000 0.600 3,000

Calculations

A_{Nc} [in.²] A_{Nc0} [in.²] $\psi_{\text{ ed},N}$ $\psi_{\text{cp},N}$ N_b [lb] 36.00 36.00 1.000 1.000 1,952

Results

 φ_{seismic} $\phi_{\text{nonductile}}$ N_{cb} [lb] φ concrete ♦ N_{cb} [lb] N_{ua} [lb] 1,952 0.650 0.750 1.000 952 552

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024
Fastening point:

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	176	2,201	8	ОК
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	176	1,366	13	OK
Concrete edge failure in direction y-**	176	2,965	6	OK

4.1 Steel Strength

 $V_{sa,eq}$ = ESR value refer to ICC-ES ESR-4266 ϕ $V_{steel} \geq V_{ua}$ ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	$\alpha_{\text{V,seis}}$
0.05	126.204	1.000

Calculations

Results

V _{sa,eq} [lb]	ϕ steel	$\phi_{nonductile}$	φ V _{sa,eq} [lb]	V _{ua} [lb]
3,386	0.650	1.000	2,201	176

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024 Fastening point:

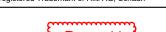
4.2 Pryout Strength

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-19 Eq. (17.7.3.1a)
$\phi V_{cp} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	

$$A_{Nc0} = 9 h_{ef}^2$$
 ACI 318-19 Eq. (17.6.2.1.4)
 $\psi_{ed,N} = 0.7 + 0.3 \left(\frac{C_{a,min}}{1.E_h} \right) \le 1.0$ ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{array}{lll} A_{Nc} & \text{see ACI 318-19 Eq. (17.6.2.1.4)} \\ A_{Nc0} & = 9 \, h_{ef}^2 & \text{ACI 318-19 Eq. (17.6.2.1.4)} \\ \psi_{ed,N} & = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5 h_{ef}} \right) \leq 1.0 & \text{ACI 318-19 Eq. (17.6.2.4.1b)} \\ \psi_{cp,N} & = \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5 h_{ef}}{c_{ac}} \right) \leq 1.0 & \text{ACI 318-19 Eq. (17.6.2.6.1b)} \\ N_b & = k_c \, \lambda_a \, \sqrt{f_c} \, h_{ef}^{1.5} & \text{ACI 318-19 Eq. (17.6.2.2.1)} \end{array}$$

Variables


k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	$\psi_{\text{ c,N}}$
1	2.000	10.000	1.000
c _{ac} [in.]	k _c	λ_{a}	f _c [psi]
8.000	21	0.600	3,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ed,N}}$	$\Psi_{cp,N}$	N _b [lb]
36.00	36.00	1 000	1 000	1 952

Results

V _{cp} [lb]	φ concrete	$\phi_{\sf seismic}$	$\phi_{nonductile}$	φ V _{cp} [lb]	V _{ua} [lb]
1,952	0.700	1.000	1.000	1,366	176

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024
Fastening point:

4.3 Concrete edge failure in direction y-

$V_{cb} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1a)
$\phi V_{cb} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\Psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{I_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	$\Psi_{c,V}$	h _a [in.]	l _e [in.]
10.000	10.000	1.000	2.500	2.000
		2.2		
λ _a	d _a [in.]	f _c [psi]	ψ parallel,V	
0.600	0.375	3,000	2.000	

Calculations

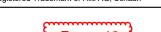
A _{Vc} [in]	A _{Vc0} [in. ⁻]	$\Psi_{ed,V}$	$\Psi_{h,V}$	V _b [lb]
62.50	450.00	1.000	2.449	6,226
Results				
V _{cb} [lb]	φ concrete	φ _{seismic}	Φ _{nonductile}	φ V _{cb} [lb]

1.000

2,965

176

5 Combined tension and shear loads, per ACI 318-19 section 17.8


0.700

β_{N}	β_{V}	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.580	0.129	5/3	44	OK	

1.000

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

4,236

www	nıı	ti C	იm

Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	3/25/2024
Fastening point			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
 concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout
 or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- "An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-19, Chapter 17, Section 17.10.5.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.10.5.3 (b), Section 17.10.5.3 (c), or Section 17.10.5.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.10.6.3 (a), Section 17.10.6.3 (b), or Section 17.10.6.3 (c)."
- Section 17.10.5.3 (b) / Section 17.10.6.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.10.5.3 (c) / Section 17.10.6.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.10.5.3 (d) / Section 17.10.6.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Metal deck - Jan 2, 2024 Date: 3/25/2024

Fastening point:

7 Installation data

Anchor type and diameter: Kwik Bolt TZ2 - CS 3/8 (2)

8

hnom2

Profile: -Item number: 2210236 KB-TZ2 3/8x3 Hole diameter in the fixture: -Maximum installation torque: 361 in.lb Plate thickness (input): -Hole diameter in the base material: 0.375 in. Hole depth in the base material: 2.500 in.

Drilling method: Hammer drilled Minimum thickness of the base material: 2.500 in.

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Hilti KB-TZ2 stud anchor with 2.5 in embedment, 3/8 (2) hnom2, Carbon steel, installation per ESR-4266

7.1 Recommended accessories

Drilling Cleaning Setting Suitable Rotary Hammer · Manual blow-out pump • Torque controlled cordless impact tool

· Properly sized drill bit Hammer

Coordinates Anchor in.

Anchor	X	у	C _{-x}	C+x	c _{-y}	C _{+y}	_
1	0.000	0.000	10.000	-	10.000	10.000	

· Torque wrench

www	hi	lti	ററ	m

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Metal deck - Jan 2, 2024	Date:	3/25/2024
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

