

2024 Northern California Structural Heart Summit

Grasping the Clinical Need and Supporting Data for T-TEER

Pei-Hsiu Huang, MD, FACC, FSCAI

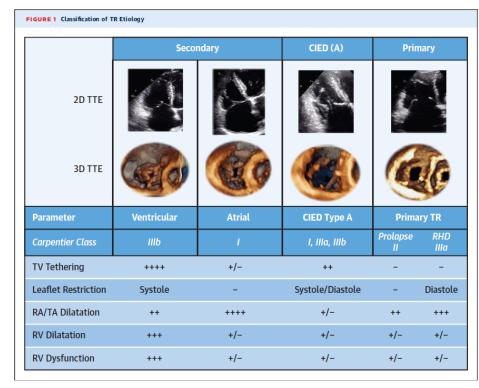
Medical Director, Cardiac Catheterization Laboratory

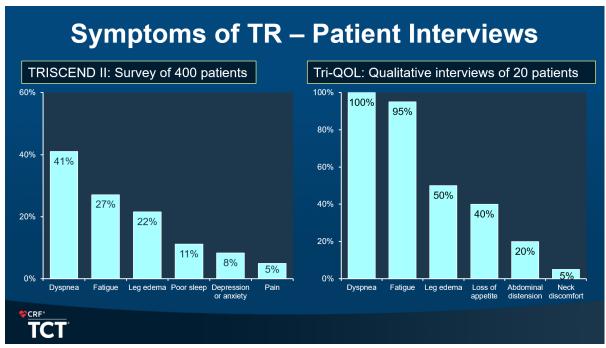
Medical Director, Adult Congenital Heart Disease Program

Sutter Medical Center, Sacramento

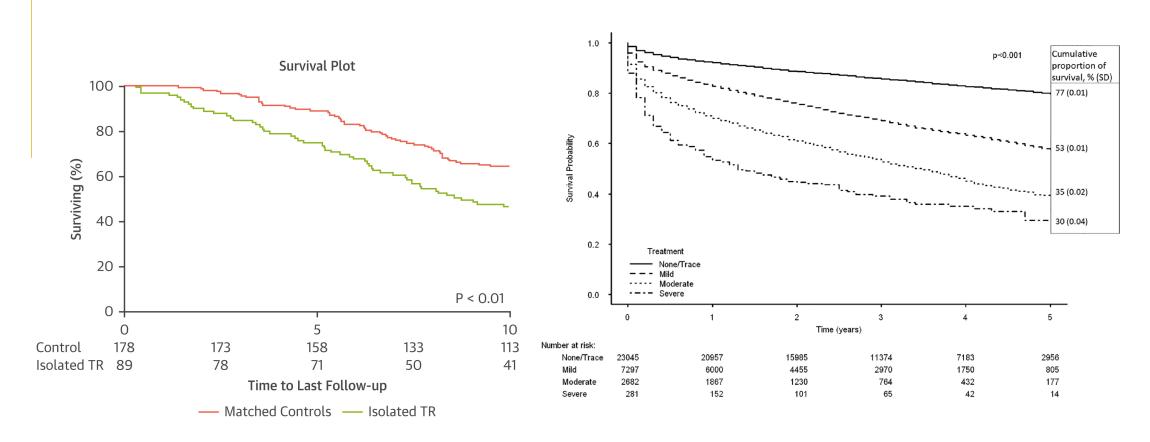
Disclosures

• Edwards Lifesciences: Physician proctor, consultant, speaker.


Objectives


- Understand the clinic significance of tricuspid regurgitation.
- Review the options for treatment of tricuspid regurgitation including tricuspid transcatheter edge-to-edge repair (T-TEER).
- Discuss key clinical trial data supporting T-TEER

Tricuspid Valve Regurgitation



Hahn R et al. JACC 2023;82(17):1711-35

Arnold S. TCT 2024

Survival with Tricuspid Regurgitation

Topilsky Y et al. JACC Imaging 2019;12(3):433-42.

Chorin E et al. Eur Heart J Cardiovasc Imaging 2020;21(2):157-65.

2020 ACC/AHA and 2021 ESC/EACTS Valve Guidelines

COR	LOE	RECOMMENDATIONS
2a	C-EO	 In patients with signs and symptoms of right-sided HF attributable to severe TR (Stages C and D), di- uretics can be useful.
2a	C-EO	 In patients with signs and symptoms of right-sided HF attributable to severe secondary TR (Stages C and D), therapies to treat the primary cause of HF (eg, pulmonary vasodilators to reduce elevated pulmonary artery pressures, GDMT for HF with reduced LVEF, or rhythm control of AF) can be useful (1,2)
		ning of Intervention support the recommendations are summarized in Online Data Supplement 32.
COR	LOE	RECOMMENDATIONS
1	B-NR	 In patients with severe TR (Stages C and D) undergoing left-sided valve surgery, tricuspid valve surgery is recommended (1-8).
2a	B-NR	 In patients with progressive TR (Stage B) undergoing left-sided valve surgery, tricuspid valve surgery can be beneficial in the context of either 1) tricuspid annular dilation (tricuspid annulus end diastolic diameter >4.0 cm) or 2) prior signs and symptoms of right-sided HF (3-10).
		2. In patients with signs and symptoms of right sided UF and sovere primary TD (Stage D) isolated triavanid
2a	B-NR	 In patients with signs and symptoms of right-sided HF and severe primary TR (Stage D), isolated tricuspid valve surgery can be beneficial to reduce symptoms and recurrent hospitalizations (11-14).

6. In patients with signs and symptoms of right-sided HF and severe TR (Stage D) who have undergone previous left-sided valve surgery, reoperation with isolated tricuspid valve surgery may be considered in

the absence of severe pulmonary hypertension or severe RV systolic dysfunction (1,2,11,18).

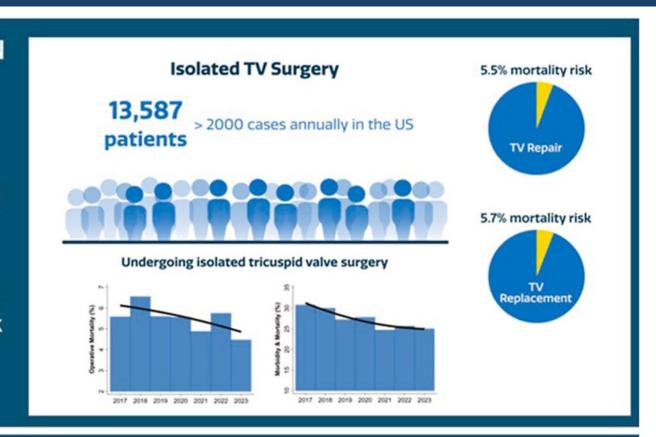
Surgery is recommended in patients with severe		
primary tricuspid regurgitation undergoing left- sided valve surgery.	1	С
Surgery is recommended in symptomatic patients with isolated severe primary tricuspid regurgitation without severe RV dysfunction.	1	С
Surgery should be considered in patients with moderate primary tricuspid regurgitation undergoing left-sided valve surgery.	lla	С
Surgery should be considered in asymptomatic or mildly symptomatic patients with isolated severe primary tricuspid regurgitation and RV dilatation who are appropriate for surgery.	lla	С
Recommendations on secondary tricuspid re	gurgitatio	on
Surgery is recommended in patients with severe secondary tricuspid regurgitation undergoing left-sided valve surgery. 423-427	1	В
Surgery should be considered in patients with mild or moderate secondary tricuspid regurgitation with a dilated annulus (≥40 mm or >21 mm/m² by 2D echocardiography) undergoing left-sided valve surgery. 423,425-427	lla	В
urgery should be considered in patients with evere secondary tricuspid regurgitation (with or without previous left-sided surgery) who are ymptomatic or have RV dilatation, in the bsence of severe RV or LV dysfunction and evere pulmonary vascular disease/hypertenion. 18,433 e	lla	В
Transcatheter treatment of symptomatic secondary severe tricuspid regurgitation may be considered in inoperable patients at a Heart Valve	Шь	С

Centre with expertise in the treatment of tricus-

pid valve disease.f

Recommendations on primary tricuspid regurgitation

Contemporary Isolated TV Surgery Outcomes


Operative mortality of 6-7% in patients without IE

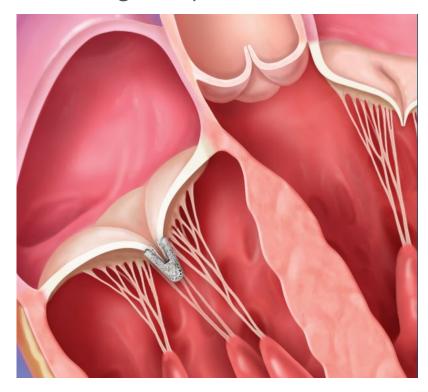
STUDY POPULATION

13,587 isolated tricuspid valve surgeries at 842 hospitals

Overall operative mortality of TV repair 5.5%, TV replacement 5.7%

Enhanced and robust risk models with new STS Risk Calculator to help inform heart team decisionmaking

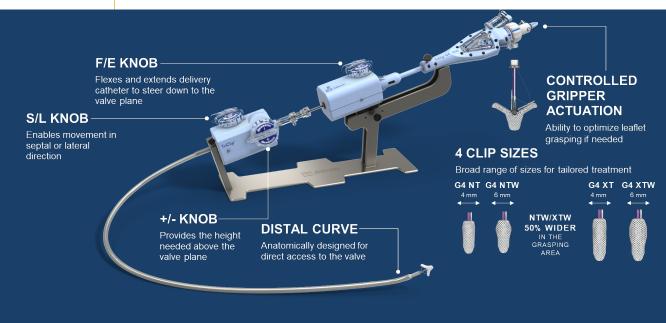
Isolated TV Surgery Outcomes Improving

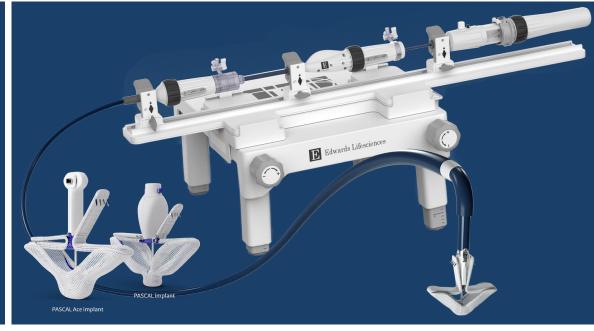


Thourani V et al. Ann Thorac Surg 2024;118(4):873-81

Transcatheter Edge-to-Edge Repair (TEER)

- Mechanism: TEER mimics surgical edge-to-edge repair by clipping the valve leaflets together, reducing regurgitation without open surgery.
- Advantages: Lower morbidity and mortality compared to surgical repair.





TEER Devices

TriClip (FDA Approved)

PASCAL (Investigational in US)

TRILUMINATE Pivotal Study Design

Patients with severe TR who remain symptomatic despite medical therapy

Randomized

Patient Population

Ability to reduce TR to Moderate or less

Randomization

1:1 TriClip: Control (Medical Therapy)

Endpoint

Hierarchical composite of all-cause mortality or tricuspid valve surgery, HFH, and KCCQ improvement ≥ 15 points at 12 months

Primary Analysis

350

Total Enrolled (Randomized)

589 (572)

Baseline Characteristics

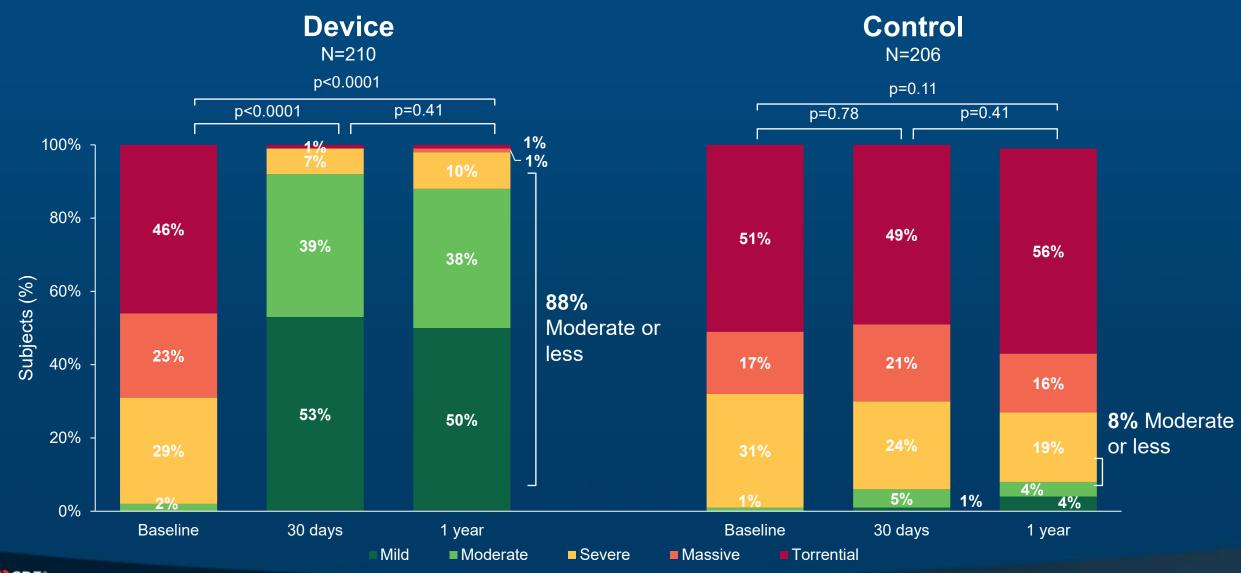
	Device	Control
Characteristic	N=285	N=287
Age (years)	78.1 ± 7.9 (285)	78.1 ± 7.6 (287)
Female sex	58.9% (168)	58.9% (169)
ВМІ	26.8 ± 5.8 (285)	27.1 ± 5.5 (287)
Atrial fibrillation	82.8% (236)	92.7% (266)
Dyslipidemia	62.8% (179)	54.0% (155)
Hypertension	81.1% (231)	81.5% (234)
Diabetes	17.2% (49)	15.7% (45)
Peripheral vascular disease	7.7% (22)	9.4% (27)
CABG	16.8% (48)	17.8% (51)
Prior percutaneous coronary intervention	15.1% (43)	14.3% (41)
Kidney disease	31.9% (91)	34.8% (100)
Liver disease	7.0% (20)	7.3% (21)
COPD	13.0% (37)	15.7% (45)
CRT, CRT-D, ICD, or permanent pacemaker	16.5% (47)	16.4% (47)
Previous aortic/mitral intervention	37.9% (108)	34.5% (99)
HFH within 1 year before enrollment	24.9% (71)	22.6% (65)
NT-proBNP (pg/mL)	1871.1 ± 1483.9 (121)	2420.7 ± 3416.1 (113)
NYHA Class III/IV	56.1% (160)	54.0% (155)
KCCQ score	55.6 ± 22.9 (285)	54.6 ± 23.8 (286)
6-minute walk distance (m)	240.5 ± 116.4 (272)	249.6 ± 125.5 (279)

Echocardiographic and Hemodynamic Characteristics

	Device	Control
Characteristic	N=285	N=287
TR Etiology		
Functional	95.7% (270/282)	93.9% (263/280)
Degenerative	2.1% (6/282)	1.8% (5/280)
Mixed	2.1% (6/282)	3.9% (11/280)
CIED lead-related	0% (0/282)	0.4% (1/280)
Baseline TR Severity		
Moderate	2.2% (6/279)	1.5% (4/274)
Severe	25.1% (70/279)	28.5% (78/274)
Massive	24.0% (67/279)	18.6% (51/274)
Torrential	48.7% (136/279)	51.5% (141/274)
Coaptation gap (mm)	5.3 ± 1.8 (219)	5.2 ± 1.8 (229)
RV TAPSE (cm)	1.7 ± 0.4 (279)	1.6 ± 0.4 (271)
RVEDD, mid (cm)	3.7 ± 0.7 (278)	3.7 ± 0.8 (274)
Right atrial volume (mL)	140.9 ± 81.2 (279)	146.7 ± 78.0 (278)
Tricuspid annulus diameter (cm)	4.3 ± 0.8 (280)	4.4 ± 0.8 (274)
Cardiac output (L/min)	4.6 ± 1.4 (285)	4.6 ± 1.4 (285)
Left ventricular ejection fraction (%)	59.4 ± 9.0 (267)	59.7 ± 9.2 (260)

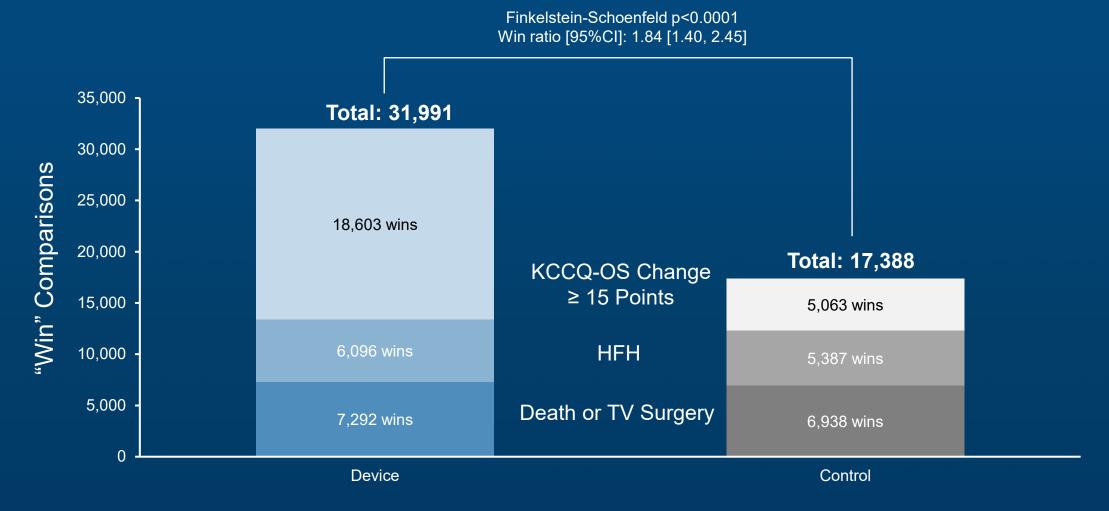
Procedural Characteristics (Device Only)

Variable	Device N=281	
System		
TriClip	29.9% (84)	
TriClip G4	70.1% (197)	
Number of devices implanted		
0	1.1% (3)	
1	14.9% (42)	
2	60.5% (170)	
3	20.6% (58)	
4	2.8% (8)	
Device type		
NT	10.0% (59/588)	
XT	32.0% (188/588)	
NTW	5.6% (33/588)	
XTW	52.4% (308/588)	
Device time (minutes)	85.6 ± 63.0 (274)	
Procedure time (minutes)	147.2 ± 72.0 (279)	
Length of hospital stay (days)	1.5 ± 1.3 (281)	
In-hospital death	0% (0)	
Home discharge	97.9% (275)	


Adverse Events through 30 Days	Device N=281
Major Adverse Events through 30 Days	
Cardiovascular mortality	0.4% (1)
New-onset renal failure	0.7% (2)
Non-elective cardiac surgery	0% (0)
Endocarditis requiring surgery	0% (0)
Other Adverse Events through 30 Days	
Myocardial infarction	0% (0)
Stroke	0.4% (1)
Major bleeding	3.2% (9)
Device embolization	0% (0)
Single leaflet device attachment (SLDA)	5.7% (16)
Device thrombosis	0% (0)

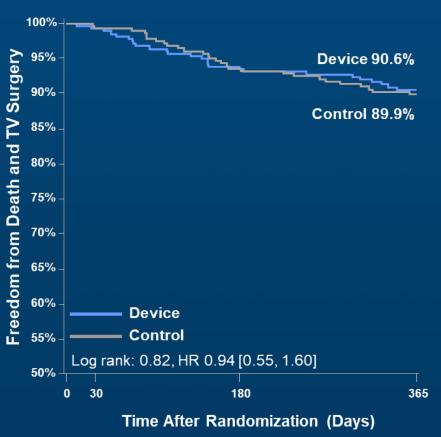
No in-hospital deaths and low rates of adverse events

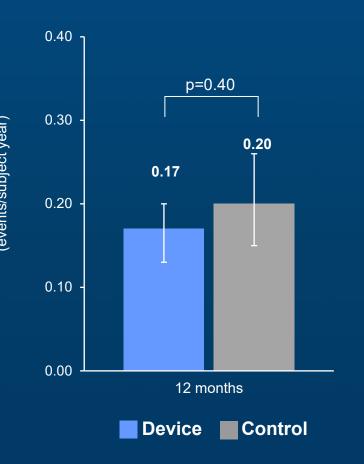
Tricuspid Regurgitation Severity



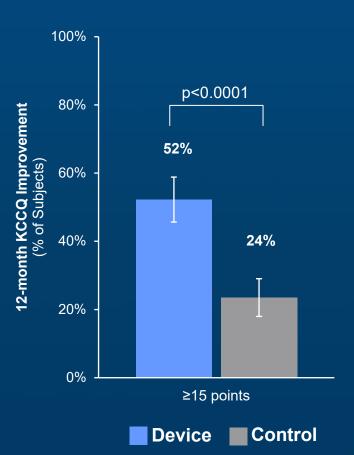
Primary Endpoint for Full Randomized Cohort (N=572)

Device subjects 84% more likely to have better outcome





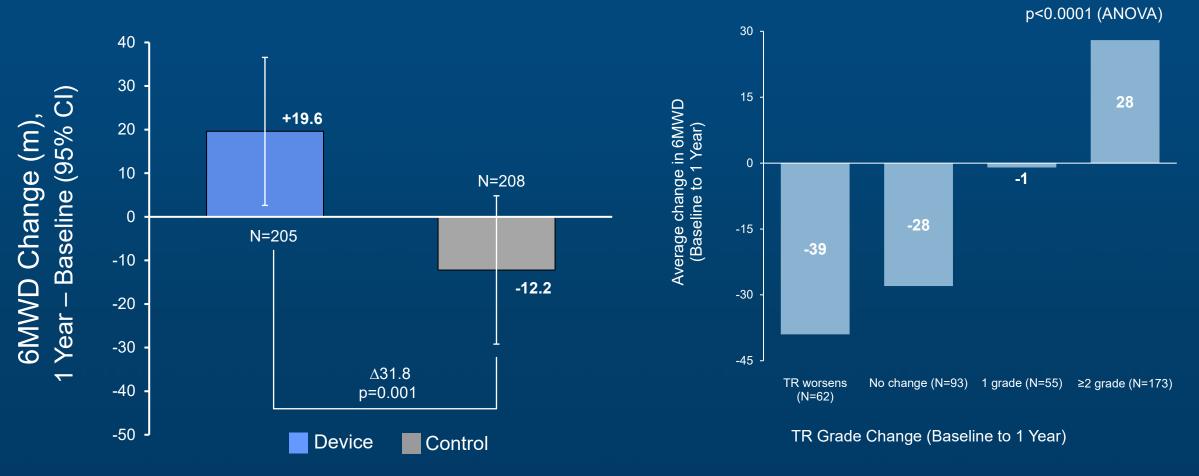
Primary Endpoint Components


Freedom from Mortality and TV Surgery

Annualized HFH


∆KCCQ-OS

Change in KCCQ by TR Reduction


Significantly greater improvement in quality of life in the device group and change in KCCQ was associated with TR reduction

Change in 6MWD by TR Reduction

Significantly greater improvement in 6MWD in device group and change in 6MWD was associated with TR reduction

Single-arm Cohort of TRILUMINATE Pivotal

Patient Population

Low likelihood of achieving moderate or less, with ability to reduce TR by 1 grade, considering factors such as:

- TR severity
- Presence and location of pacing lead
- Coaptation gap size

Randomization

TriClip Only

Endpoint

Survival through 12 months with KCCQ improvement ≥ 10 points compared to baseline

Primary Analysis

100

Primary Endpoint

Survival through 12 months with a quality-of-life improvement (assessed using KCCQ overall score) of at least 10 points compared to baseline.

Single-arm and All Randomized Baseline Characteristics

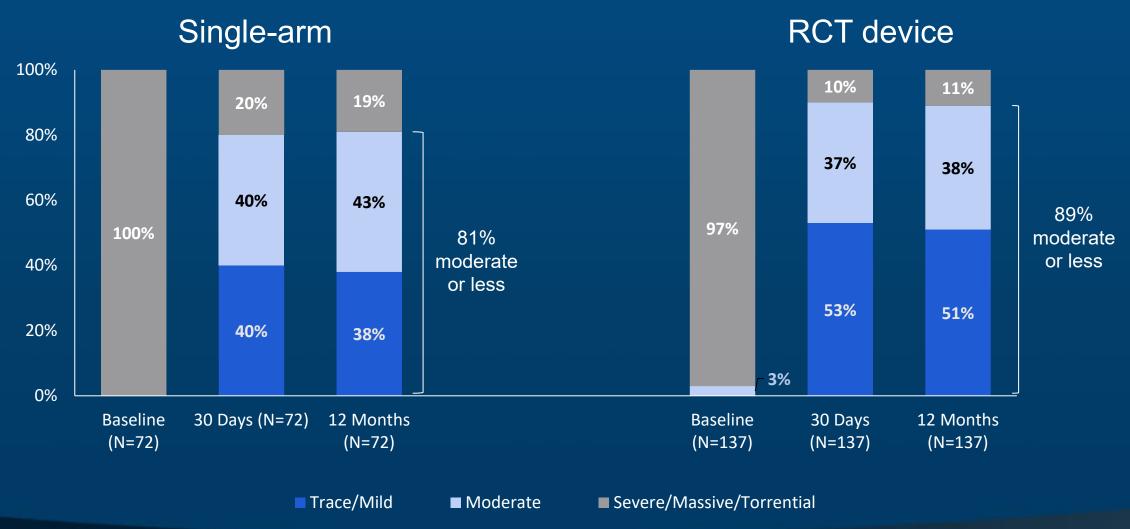
Variable	Single-arm N=100	All Randomized N=572
Age, mean (years)*	80.4 ± 6.2	78.1 ± 7.8
Female	53% (53)	59% (337)
NYHA Class III or IV	59% (59)	55% (315)
KCCQ Score, mean	54.5 ± 22.6	55.1 ± 23.3
Renal disease	36% (36)	33% (191)
Liver disease	3% (3)	7% (41)
Atrial fibrillation	96% (96)	88% (502)
COPD	22% (22)	14% (82)
Presence of cardiac leads*	35% (35)	16% (94)
Prior aortic or mitral intervention*	44% (44)	36% (207)
Prior tricuspid intervention	4% (4)	0.3% (2)

Single-arm and All Randomized Baseline Characteristics

Variable, cont.	Single-arm N=100	All Randomized N=572
TR Severity Moderate Severe Massive Torrential*	0% (0) 9% (9) 17% (16) 74% (71)	2% (10) 27% (148) 21% (118) 50% (277)
Functional TR	86% (85)	95% (533)
Coaptation gap, mean (mm)*	7.4 ± 2.7	5.3 ± 1.8
RVEDD (mid, cm)*	4.0 ± 0.8	3.7 ± 0.7
RAV (mL)*	182 ± 84	144 ± 80
TV annulus diameter (cm)	4.6 ± 0.8	4.3 ± 0.8
RV TAPSE (cm)	1.6 ± 0.4	1.7 ± 0.4
LVEF (%)	58.9 ± 9.5	59.6 ± 9.1
CO (L/min)	4.3 ± 1.3	4.6 ± 1.4

Single-arm and All Randomized Procedural Outcomes

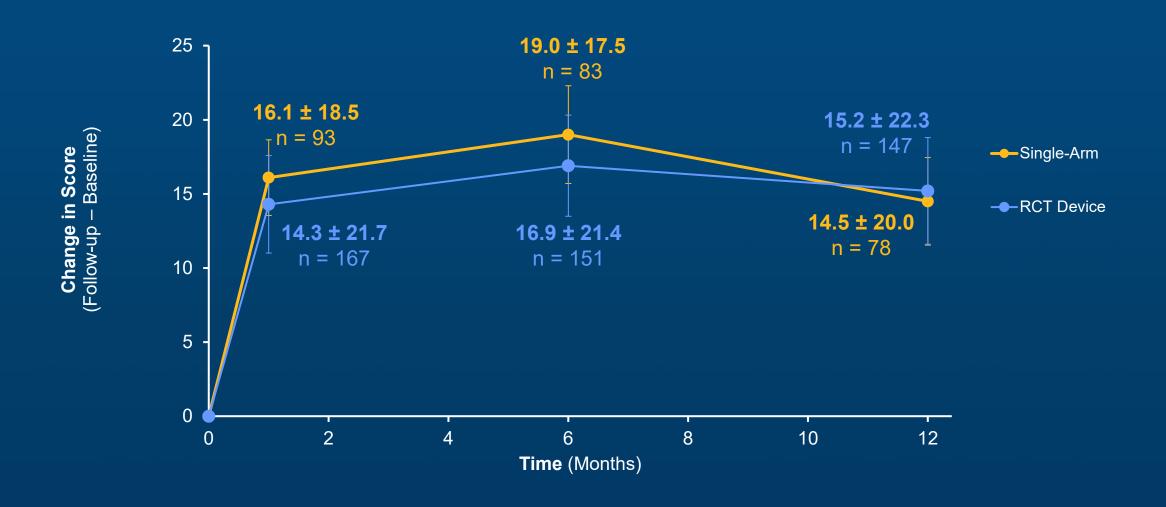
Variable	Single-arm N=100	All Randomized TEER Subjects N=281
Technical Success	98.0%	98.9%
Device Time, mean (min)	84 ± 59	86 ± 63
Total Procedure Time, mean (min)	154 ± 65	147 ± 72
Number of clips, mean	2.2 ± 0.8	2.1 ± 0.7
Discharge to Home	96% (96)	98% (275)
Length of Stay, mean (days)	1.8 ± 2.1	1.5 ± 1.3
In-Hospital Mortality	0% (0)	0% (0)


Adverse Events Through 30 Days

Major Adverse Events (MAEs)	Single-arm N=99
Total	0%
Cardiovascular mortality	0%
Endocarditis requiring surgery	0%
New-onset renal failure	0%
Non-elective CV Surgery, TVRS for device-related AE	0%

Other AEs	Single-arm N=99
Any-cause mortality	0%
Tricuspid valve surgery	0%
Tricuspid valve re-intervention	2%
Major bleeding	5%
Tricuspid mean gradient ≥5mmHg	3%
SLDA	7.5%
Stroke	0%
Myocardial Infarction	0%
Embolization	0%
Device thrombosis	0%
New pacemaker	0%

Sustained TR Reduction (Paired)



12-month All-cause Mortality and HFH

Variable	Single-arm N=100	RCT Device N=175
All-cause mortality	15.0%	8.6%
Heart failure hospitalization	24.0%	14.9%

KCCQ-OS Improvement

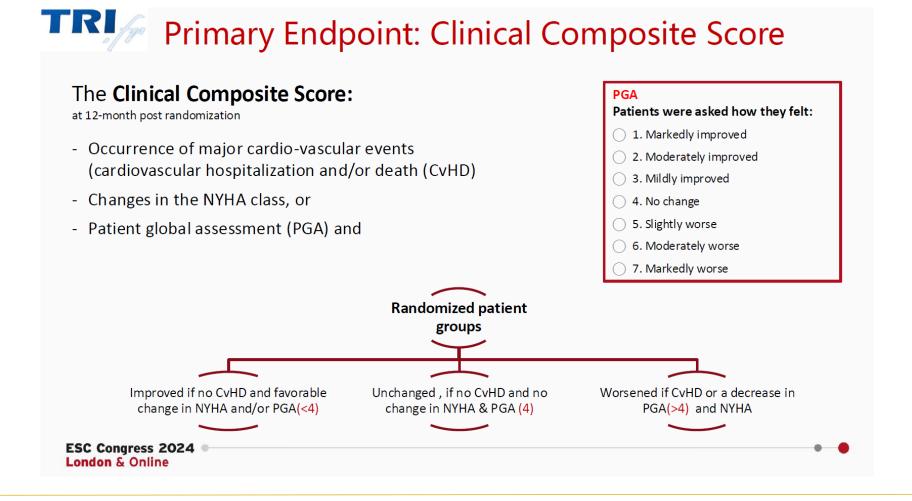
Single-arm Primary Endpoint

Single-arm	Estimate*	Lower 98.75% CI	Performance Goal	P value
Primary endpoint	46.2% (42/91)	34.3%	30%	0.0008

^{*}Nine subjects excluded from analysis: Missing KCCQ score (n=6), COVID related death/hospitalization prior to 12 months (n=2), withdrew prior to 12 months (n=1).

Primary Endpoint

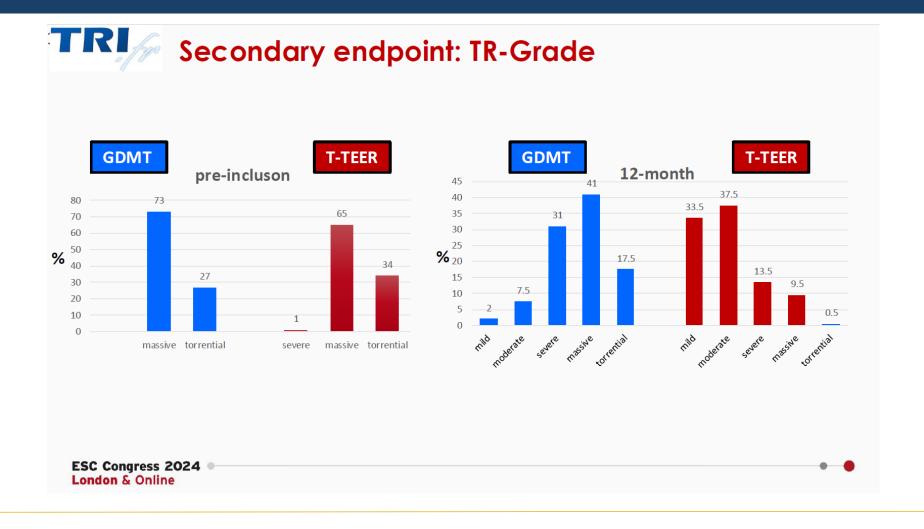
Survival through 12 months with a quality-of-life improvement (assessed using KCCQ overall score) of at least 10 points compared to baseline (performance goal of 30%).



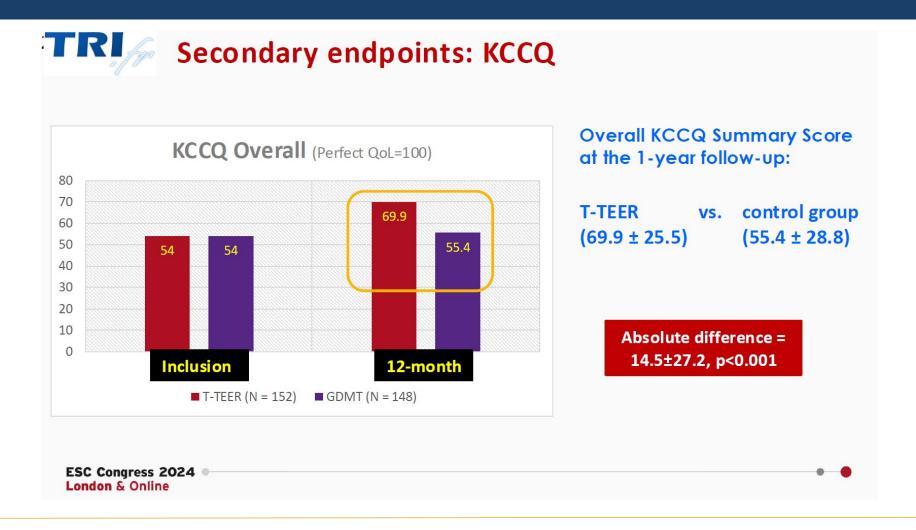
Primary endpoint met despite more anatomically complex patients.

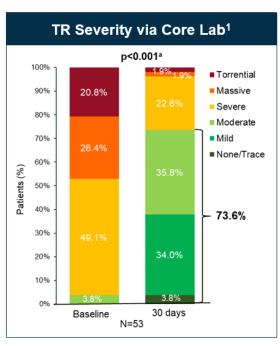
Conclusions

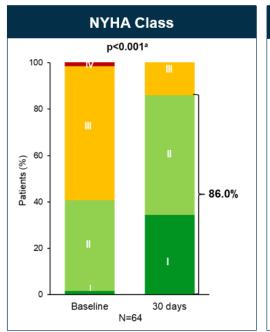
- T-TEER with TriClip showed an excellent safety profile with low rates of adverse events
- The primary endpoint was strengthened in the full randomized cohort
 - Primary endpoint continues to be primarily driven by improvements in health status
 - HFH favored the device group in the subsequently enrolled cohort
- All secondary endpoints significantly favored the Device group (KCCQ, 6MWD, and TR reduction)
- Despite the complex anatomies present in the single-arm cohort, outcomes between single-arm and randomized cohorts were comparable, including 30-day safety, sustained TR reduction, and 12month change in KCCQ-OS.

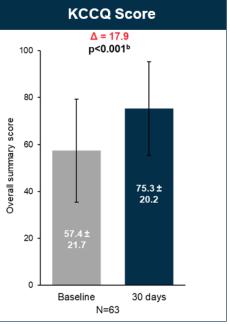

Primary Endpoint (ITT) (1)

At 1-year follow-up, 109 patients (74.1%) in the T-TEER group improved, compared to 58 patients (40.6%) in the GDMT group

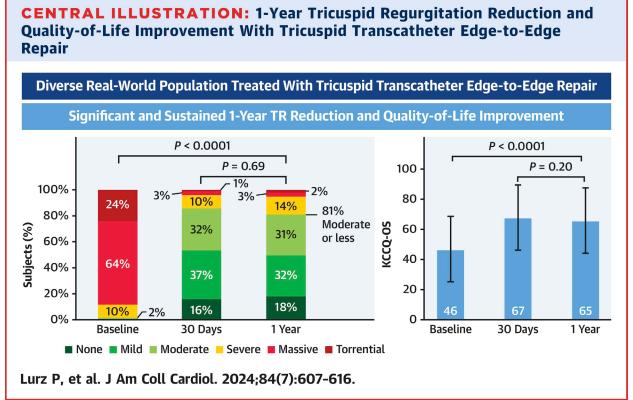

The T-TEER group has a probability of a better rank of 0.67; 95% confidence interval, 0.61 to 0.72; P <.0001

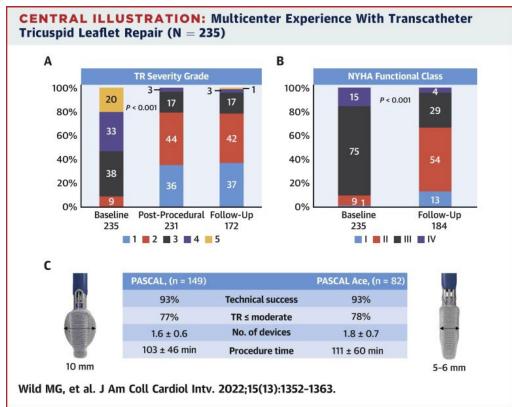



Clinical Data – CLASP II TR Trial (Roll-in Cohort)


Roll-in cohort:

TR Reduction with Clinical and Quality-of-Life Improvements

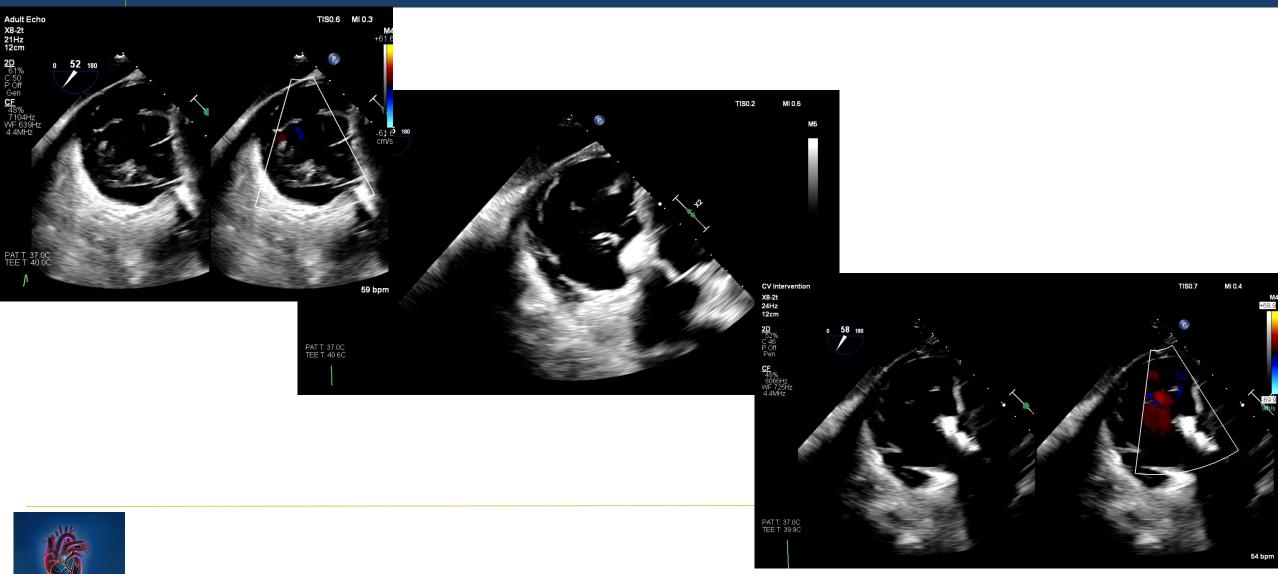

83.0% improved by ≥ 1 TR grade, 62.3% by ≥ 2 grades, and 73.6% reached ≤ moderate TR at 30 days


¹Core laboratory: Cardiovascular Research Foundation. ªWilcoxon signed-rank test. Paired t-test. TR, tricuspid regurgitation; NYHA, New York Heart Association; KCCQ, Kansas City Cardiomyopathy Questionnaire

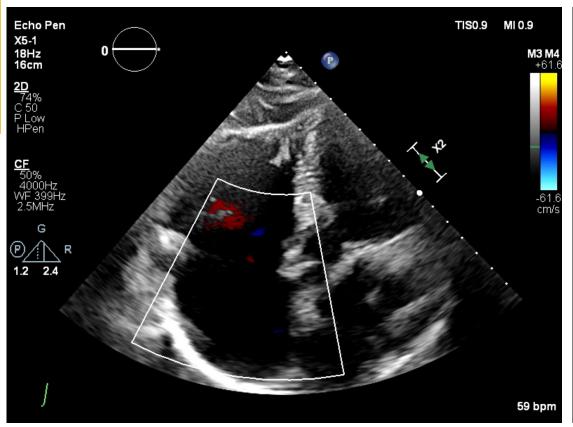
Real-World Data – bRIGHT and PASTE Registries

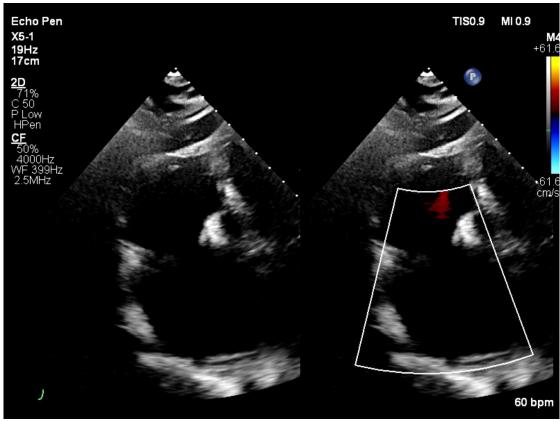
TEER vs Medical Management - Common Theme

- T-TEER is a safe procedure that reduces TR to moderate or less in 70% to 90% of patients.
- T-TEER reduces symptoms to improves quality of life and may reduce HF hospitalizations.
- T-TEER has not been shown to reduce mortality.



Case – 82yo F with dyspnea and fatigue


- Hx emergent hemiarch replacement for Type A aortic dissection at 79yo
- CKD 3b
- PAF anticoagulation w/apixaban
- Pulm HTN
- Hx liver biopsy for abnormal LFTs, severe fibrosis by US w/elastography
- RHC RA 23, PA 40/25/30, PCW 25, TD CO/CI 1.5/0.89, Fick CO/CI 1.39/0.82
- RHC RA 9, PA 36/16/23, PCW 13, TD CO/CI 2.78/1.68, Fick CO/CI 2.08/1.26



Case – 82yo F with dyspnea and fatigue

Case – 82yo F with dyspnea and fatigue

Conclusion

- Untreated severe or greater TR is associated with increased mortality.
- Medical management of TR primarily consists of diuretics and treatment of underlying etiologies such as pulmonary hypertension or left heart disease when indicated.
- Contemporary outcomes for isolated tricuspid valve surgery have improved but mortality remains elevated.
- T-TEER is a safe treatment option that can significantly reduce TR, improve quality of life, and may also reduced heart failure hospitalizations for patients who are at increased risk for surgery.

THANK YOU

