Targeted Epigenetic Modification
Kyle Fink, PhD – UC Davis Stem Cell Program
Adjunct Assistant Professor, Department of Neurology

• TALE
 – Derived from plant pathogenic bacteria from the genus Xanthomas
 – One of many DNA-targeting proteins
 – Each repeat comprises 33-35 amino acids.
 – Can be rapidly synthesized to target any base pair sequence
 – Highly efficient and specific with minimal off-target effects

• CRISPR/Cas9
 – Original Cas9 derived from Streptococcus pyogenes
 – Uses a synthetic guide RNA (gRNA) to deliver the Cas9 to a desired location
 – Cas9 can be used interchangeably with different gRNA allowing for rapid targeting and flexibility

• Both systems can be constructed with a variety of transcription factors to epigenetically regulate gene expression (i.e., nucleases, activators, repressors)
Human HD fibroblasts confirmed to have SNP rs3857369 display significant allele-specific reduction of the mutant allele (red bar) without significantly altering healthy allele expression (blue bar).
Primary cortical and striatal neurons cultured from a 10 month old YAC128 mouse treated with TALE T3y.

Fink, KD
In vivo injection of the TALE plasmid and synthetic RNA using TurboFect and Invivofectamine.
Transcription Activator-like Effector (cont.)

Quantification of TALE biodistribution and expression following LNP encapsulation and unilateral injection.

Fink, KD
Co-localization of the TALE T3y with cortical and striatal neurons with TaqMan SNP genotyping for allele expression and Western Blot for protein quantification.
Transcription Activator-like Effector (cont.)

Toxicity screen following injection of LNP encapsulated TALE T3y.
Other Disease Indications

CDKL5 deficiency
TALE and dCas9

Angelman Syndrome
MSC Delivery of S100

Gene Activation:
Loss-of-function
- Angelman’s Syndrome
 - Zinc Finger approach
- CDKL5 deficiency (infantile epilepsy)
 - TALE and CRISPR activation studies

Gene Silencing:
Gain-of-function diseases or disorders
- Huntington’s disease
 - TALE and CRISPR silencing studies
- Potential genes implicated in cancer
Thank you!

• Jan Nolta
 — Director Stem Cell Program
• Vicki Wheelock
 — Director Huntington’s disease clinic
• David Segal
 — Associated Director Genome Center
• Peter Deng
• Anvita Komarla
• Joey Aprile
• Megan Cheng
• Sharon Burk
• Thuy Nguyen
• Jasmine Carter
• Sakereh Carter

• Support for this project was provided by a NIH NRSA Postdoctoral Fellowship F32NS090722 (Fink)
• NIH Director’s transformative award 1R01GM099688 (Nolta)
• NIH NIGMS Predoctoral Fellowship T32GM099608 (Deng)
• The Stewart’s and Dake Family Gift (Nolta/Fink)
• Help4HD International
• LouLou Foundation, UPenn Orphan Disease Center (Nolta/Fink)
• Philanthropic donors from the HD community, including the Roberson family, WeHaveAFace.org and TeamKJ