UCDAVIS HEALTH

University of California, Davis Medical Center; Sacramento, CA

Introduction

Determination of pregnancy status is often an important checkpoint for medical decision-making in the emergency department (ED). Although urine screening is convenient, patients may not be able to produce urine on demand—requiring serum or plasma-based B-hCG testing.

Quantitative serum B-hCG tests are not ideal due to requiring time to clot and specimen dilutions to quantify high biomarker concentrations. Delays in quantitative B-hCG testing impacts ED workflow and creates a situation where the determination pregnancy status could be delayed or missed.

This project saw the development of a qualitative plasma B-hCG test for use in the ED. Plasma samples do not require clotting compared to serum and qualitative testing eliminates the need for specimen dilution—thereby accelerating test turnaround time.

Methods

The UC Davis Clinical Chemistry Laboratory adapted an existing FDA approved quantitative B-hCG assay (Beckman Coulter, Brea, CA) for qualitative use.

As required by Clinical Laboratory Improvement Amendment (CLIA) regulations, new cut offs require validation prior to implementation. A plasma B-hCG cut off of 25 mIU/mL was identified based on literature review and consensus among a multidisciplinary UCD Health team.

Chart review was performed for 510 (492 females and 18 males) patients who had undergone quantitative serum B-hCG testing from June 2018 through August 2018. Receiver operator curve (ROC) analysis was performed to verify the performance of the 25 mIU/mL cut off. Total and analytical turnaround time was compared pre- and postimplementation.

Patient Distribution		
Quantitative serum B-hCG testing (6/1/2018 – 8/3		
	Pregnant	Non-pregnant
Female	137	355
Male	0	18
Qualitative plasma B-hCG testing (10/18/2018 – 11/		
	Pregnant	Non-pregnant
Female	3	112
Male	0	0
		人名卡尔 化可加的 人名法尔尔 化可加的

Raymond Gong, MD¹; Kathy Dagang, CLS¹; Daniel Colby, MD²; Larissa May, MD²; Kelly Owen, MD²; Sergio Rodriguez, CLS¹, Nam K. Tran, PhD¹ ¹Department of Pathology and Laboratory Medicine, ²Department of Emergency Medicine

- minutes, P < 0.001).

Pregnancy screening in patients that do not produce urine require serum or plasma B-hCG testing. Existing quantitative B-hCG tests may not be compatible with ED turnaround time requirements. Safe implementation of a qualitative plasma B-hCG test improved ED workflow by accelerating the total turnaround time.

References:

- Techniques in Diagnostic Microbiology. Springer, Boston, MA. Access Total BhCG 5th IS Instructions for Use (Ref No. A85264). Beckman Coulter, Inc.

Results

Using the new 25 mIU/mL cut off, clinical sensitivity was 96% and specificity was 100%, which is comparable to existing plasma- and urine-based qualitative B-hCG tests on the market.

Mean (SD) analytical turnaround was significantly faster with the new qualitative test (38.7 [18.9] vs. 52.6 [33.1] minutes, P<0.001).

Additionally, mean total turnaround time was also significantly reduced with the new B-hCG test (78.7 [37.8] vs. 160.0 [125.3]

Post-implementation case review of 100 patients did not identify erroneous reclassification of pregnancy status. ED physician response was unanimously positive.

Conclusions

ABSTRACT 483 Raymond Gong: raygong@ucdavis.edu Nam K Tran: nktran@ucdavis.edu

Braunstein GD, Rasor J, Danzer H, Adler D, Wade ME. Serum human chorionic gonadotropin levels throughout normal pregnancy. Am J Obstet Gynecol. 1976;126(6):678-81.

Lenton EA, Neal LM, Sulaiman R. Plasma concentrations of human chorionic gonadotropin from the time of implantation until the second week of pregnancy. Fertil Steril. 1982;37(6):773-8.

Beckman Coulter, Inc. UniCel DxI 800 Access Immunoassay System.

https://www.beckmancoulter.com/en/products/immunoassay/dxi-800. Accessed February 2, 2019.

Wang Y.F., Kobayashi M. (2013) Antibody Detection: Principles and Applications. In: Tang YW., Stratton C. (eds) Advanced