

Department of Pathology and Laboratory Medicine

Sudden Infant Deaths with COVID-19: A Report of Three Cases

Alexander Ladenheim, M.D. Jacob Donnelly, D.O. Irfan Chaudry, M.D. Jason Tovar, M.D. Keng-Chih Su, M.D. Sarah E. Avedschmidt, M.D. Katherine Raven, M.D.

Outline

- Epidemiology of SARS-CoV-2 infection in children
- Case presentations
- Discussion
 - Key observations
 - Utility of postmortem nasal swab PCR for SARS-CoV-2
 - Histologic findings
 - B.1.429 variant

Epidemiology in Children

- SARS-CoV-2 severity: in general, children << adults
 - However, evolving understanding of disease in children
 - PEDSnet cohort¹
 - 5734 children with PCR+ COVID-19 (4% of cohort)
 - 359 (7%) were hospitalized
 - 8 (0.1%) died
 - Age < 1 year was risk factor for severe disease (OR 2.96, 95% CI 1.85-4.73)
 - N3C cohort:² preliminary findings similar
 - 91,865 children with PCR+ COVID-19 (12.6% of cohort)
 - 5213 (6%) were hospitalized
 - 50 (1%) died

Case 1 – Clinical History

- Maternal History:
 - 32-year-old G5P4 mother
 - 1.2 ppd smoking history
 - Received prenatal care throughout pregnancy.
- Decedent History:
 - 49 days old male
 - No symptoms or health concerns prior to death
 - Term (born at 37 weeks); no health issues after delivery

Case 1 – Clinical History

- Timeline Of Events On The Day Of Death:
 - Fed at 09:00, then mother and a 2-year-old sibling napped in mother's bed
 - Mother woke at 11:00 to find the decedent apneic and unresponsive
 - The decedent was lying in dried fluids
 - The baby was moved to a nearby crib, and EMS was contacted
 - EMS arrived and began CPR; cardiac rhythm alternated between PEA and asystole
 - Pronounced dead at ED
- Postmortem Laboratory Testing:
 - SARS-CoV-2 PCR (nasal swab): Positive
 - Genotyping: viral variant B.1.429

Case 1 – Gross Findings

- Autopsy findings:
 - Cardiovascular:
 - Heart weighed 18.8 g, with unremarkable anatomy and great vessels.
 - Respiratory:
 - Mild congestion was present in the lung parenchyma bilaterally.
 - Combined lung weight of 85.6 g.
 - These findings were consistent with viral pneumonia.

200x: Chronic interstitial inflammation and hemorrhage

H&E, 100x: Hemorrhage and focal fibrin

Case 1 – **Microscopic Findings**

HEALTH

• Respiratory:

- Bilateral lungs congested with diffuse hemorrhage and focal intraalveolar fibrin accumulation.
- Interstitial lymphohistiocytic inflammatory infiltrates and thickened alveolar septae

Case 2 – Clinical History

- Maternal History:
 - 21-year-old G6P3 mother
 - Received prenatal care beginning at 20 weeks
 - 22 weeks: had threatened abortion and UTI
 - 28 weeks: hospitalized for preeclampsia; received steroids and had C-section delivery
- Decedent History:
 - 4 months old male
 - Preterm (born at 31 weeks, 2 days); remained in the NICU for 5 weeks after birth
 - Healthy after discharge; slept exclusively in a crib
 - 3 months: began experiencing intermittent apneic periods and tested positive for SARS-CoV-2
 - Apparently recovered: seen three weeks later at pediatrician's office and appeared asymptomatic, received three-month vaccinations without incident

Case 2 – Clinical History

- Timeline Of Events On The Day Of Death:
 - Fed at 11:00 under supervision of father
 - At 15:30 decedent became fussy, and the father placed the decedent in the crib supine for a nap
 - At 17:30 decedent woke and was placed on in the prone position with a pacifier.
 - At 18:30 the decedent was observed to be napping and sucking on the pacifier in the prone position
 - At 19:30 the decedent was found lying prone and unresponsive
 - EMS was contacted and CPR was initiated by the mother
 - EMS found the decedent pink, warm, dry, with agonal respirations
 - Pronounced dead in ED
- Postmortem Laboratory Testing:
 - SARS-CoV-2 PCR (nasal swab): Positive
 - Genotyping: viral variant B.1.429

Case 2 – Gross Findings

- Autopsy findings:
 - Cardiovascular:
 - Heart weighed 18.4 g, with unremarkable anatomy and great vessels.
 - Respiratory:
 - Congestion in the lung parenchyma bilaterally with patchy subpleural hemorrhage bilaterally.
 - The combined lung weight was 70.6 g.

Case 2 – Microscopic Findings

- Respiratory:
 - Bilateral lungs with diffuse hemorrhage and focal intraalveolar fibrin
 - Prominent chronic interstitial inflammatory infiltrate

Case 3 – Clinical History

- Maternal History:
 - 26- year-old G6P6004 mother
 - Unknown prenatal history
 - The mother had two other children who died in early childhood and two children removed from the home by social services
- Decedent History:
 - 9 months old female
 - Term (born at 39 weeks)
 - No health issues after delivery and was discharged home
 - By report of 1 caretaker, was experiencing a cough on the day of death

Case 3 – Clinical History

- Timeline Of Events Prior to Death:
 - Placed under the care of the decedent's maternal grandfather
 - The grandfather placed the decedent on the floor sitting up with a bottle of formula and took a nap in an adjacent room
 - After an unspecified period, the grandfather woke, checked on the decedent, and found them supine and unresponsive
 - EMS was contacted; the grandfather took the decedent to a nearby hospital via his personal vehicle
 - Upon arrival to the ED, the decedent was in PEA on cardiac monitoring
 - Intubated and had return of spontaneous circulation after resuscitation efforts
 - Transferred to another facility for further treatment

Case 3 – Clinical History

- Imaging:
 - Chest X-ray demonstrated patchy perihilar infiltrates bilaterally and consolidation of the RUL lung
- Antemortem Laboratory testing:
 - Severe metabolic acidosis, lactic acidosis, and hyperglycemia (pH 6.80, HCO3- 4.7 mmol/L, PO2 387 mmHg, PaCO2 35 mmHg, glucose 881 mg/dL, anion gap 25 mEq/L, lactate 19.0 mmol/L, and elevated troponins (0.22 ng/mL); likely related to cardiac arrest and resuscitation.
 - SARS-CoV-2 PCR (nasal swab): Negative
- Expired the following day despite supportive care
- Postmortem Laboratory Testing:
 - SARS-CoV-2 PCR (nasal swab): Positive

Case 3 – Gross Findings

- Autopsy findings:
 - Cardiovascular:
 - Heart with unremarkable anatomy and great vessels.
 - Respiratory:
 - Congestion in the lung parenchyma bilaterally and right upper lobe consolidation

H&E, 200x: Acute pneumonia and focal fibrin

H&E, 200x: Hemorrhage, chronic interstitial inflammation, and focal fibrin

Case 3 – Microscopic Findings

- Respiratory:
 - Bilateral lungs with congestion, acute pneumonia, and evidence of acute lung injury with diffuse hemorrhage and scattered intraalveolar fibrin
 - Mild interstitial chronic inflammation

Discussion – Key Observations

	Case 1	Case 2	Case 3
Age	1.5 mo	4 mo	9 mo
Risk factors	(none)	Pre-term (31 wks)	Sibling deaths in childhood
Disease course	Healthy prior to DoD	COVID infection 3 wks prior, recovered	Healthy prior to DoD
Symptoms	(none)	(none)	Possible cough
Unobserved period prior to death	Yes	Yes	Yes

Discussion – COVID Testing

	Case 1	Case 2	Case 3
Antemortem COVID PCR	(none)	Positive (3 wks prior to death)	Negative (1 day prior to death)
Postmortem COVID PCR	Positive	Positive	Positive

Discussion – COVID Testing

- Case 1: asymptomatic; positive postmortem test
- Case 2: asymptomatic; prior confirmed COVID infection
 - Viral shedding? Positive postmortem test may not represent active infection
- Case 3: possible cough; negative antemortem test (1 day prior to death)
 - False negative antemortem test?
 - Sensitivity of SARS-CoV-2 PCR testing in children as low as 58.1%³
 - Preanalytic factors: collection practices, difficulty obtaining patient cooperation, problems with specimen transport or storage
 - Timing of testing: tests performed closer to symptom onset more likely to be positive
- Limited data on sensitivity and specificity of postmortem PCR testing
 - One study showed a sensitivity of 96.7% and a 94.2% specificity⁴
 - Testing performed within 0-6 days of death

Discussion – Pulmonary Microscopic Findings

Pathologic Finding	Number of cases	Notes
Diffuse hemorrhage	3/3	
Intraalveolar fibrin	3/3	Most prominent: case 3
Acute pneumonia	1/3	
Interstitial chronic inflammation	3/3	Most prominent: case 2
Alveolar septal thickening	2/3	

- These findings are similar to those reported in adults with SARS-CoV-2 infection:⁵⁻⁶
 - Diffuse alveolar damage
 - Interstitial lymphohistiocytic inflammation
 - Intravascular fibrin thrombi
 - (Possibly) viral cytopathic changes

Discussion – Investigation of Sudden Death

- Integrating available data⁷
 - Reported history
 - Scene investigation
 - Antemortem clinical findings and laboratory assessment
 - Autopsy gross findings
 - Radiography
 - Postmortem laboratory assessment
 - Autopsy microscopic findings

Discussion – Investigation of Sudden Death

- Reported history
 - Unobserved periods and risk factors for asphyxia
- Autopsy findings
 - Pulmonary gross abnormalities
 - No external trauma
 - No specific or soft signs of asphyxia or airway obstruction
- Microscopic findings
 - Histologic evidence of pulmonary injury
 - No microscopic evidence supporting alternate theories
- Laboratory assessment
 - Positive postmortem SARS-CoV-2 PCR testing

SARS-CoV-2 Variant B.1.429

- Sequencing of NP swab samples detected this variant in 1 case
- Circulating in California in late 2020 to early 2021⁸
- Notable mutations:⁹
 - Viral spike proteins: L452R mutation
 - Same mutations seen in the current variants of concern
- Impact: associated with⁸⁻¹⁰
 - Higher viral loads
 - Increased infectivity
 - Escape from neutralizing antibodies
 - Resistance to monoclonal antibody therapies
- Emerging variants and vaccination practices: shift in vulnerable groups?

Summary

- Although less common, the pediatric population can suffer severe and fatal SARS-CoV-2 infections
- Very young children may be apparently asymptomatic, or signs may go unnoticed by caregivers
- Postmortem nasal swab PCR may play a role in surveillance for SARS-CoV-2 infection and the investigation of sudden/unexpected death
- The pulmonary histologic findings in children are similar to those reported in adults
- Emerging viral variants and vaccination practices may cause a shift in epidemiology, with an increased SARS-CoV-2 disease burden in younger populations

References

- 1. Bailey LC, Razzaghi H, Burrows EK, et al. Assessment of 135 794 Pediatric Patients Tested for Severe Acute Respiratory Syndrome Coronavirus 2 Across the United States. JAMA Pediatr. 2021;175(2):176-184. doi: 10.1001/jamapediatrics.2020.5052
- 2. Martin B, DeWitt PE, Russell S, et al. Children with SARS-CoV-2 in the National COVID Cohort Collaborative (N3C). medRxiv [Preprint]. 2021:2021.07.19.21260767. doi: 10.1101/2021.07.19.21260767
- Di Pietro GM, Capecchi E, Luconi E, et al. Diagnosis of SARS-CoV-2 in children: accuracy of nasopharyngeal swab compared to nasopharyngeal aspirate. Eur J Clin Microbiol Infect Dis. 2021;40(6):1155-1160. doi:10.1007/s10096-020-04131-z
- 4. Hall JA, Harris RJ, Emmett HE, et al. On the Sensitivity and Specificity of Postmortem Upper Respiratory Tract Testing for SARS-CoV-2. J Infect Dis. 2021;224(3):389-394. doi: 10.1093/infdis/jiab270
- 5. Vasquez-Bonilla WO, Orozco R, Argueta V, et al. A review of the main histopathological findings in coronavirus disease 2019. Hum Pathol. 2020;105:74-83. doi:10.1016/j.humpath.2020.07.023
- 6. Polak SB, Van Gool IC, Cohen D, et al. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2020;33(11):2128-2138. doi: 10.1038/s41379-020-0603-3
- 7. Corey TS, Hanzlick R, Howard J, et al. A functional approach to sudden unexplained infant deaths. Am J Forensic Med Pathol. 2007;28(3):271-7. doi: 10.1097/01.paf.0000257385.25803.cf
- 8. McCallum M, Bassi J, De Marco A, et al. SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science. 2021;373(6555):648-654. doi: 10.1126/science.abi7994
- 9. Deng X, Garcia-Knight MA, Khalid MM, et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell. 2021 Jun 24;184(13):3426-3437.e8. doi: 10.1016/j.cell.2021.04.025
- 10. "SARS-CoV-2 Variant Classifications and Definitions." CDC.gov. <u>https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html</u>. Updated August 24, 2021. Accessed August 24, 2021.