UCDAVIS HEALTH

Introduction

Total-Body Positron Emission Tomography (TB-PET)

- uEXPLORER is a total-body PET/CT scanner with 194 cm axial field of view (FOV)
- Provides substantially improved image quality for PET imaging* [1]
- Spatial resolution of about 3.0 mm
- 15-68-fold increase in sensitivity* [2]

* compared to conventional PET scanners with shorter axial FOV

Scatter Correction Framework

- Iterative image reconstruction (OSEM)

Validation of a Scatter Correction Method for Total-Body Positron Emission Tomography

<u>R. Bayerlein¹</u>, Z. Xie², E. K. Leung^{1,2,3}, Y. G. Abdelhafez¹, B. A. Spencer^{1,2}, N. Omidvari², Q. Wang², E. Li², L. Nardo¹, S. R. Cherry^{2,1}, R. D. Badawi^{1,2}

¹Department of Radiology, UC Davis Health, Sacramento, CA, USA ²Department of Biomedical Engineering, University of California Davis, CA, USA ³UIH America, Inc., Houston, TX, USA

Validation

Quantitative Image Quality Assessment Using the NEMA IQ phantom

Figure 2 (left)

Reconstructed images of 3 standard test phantoms at different axial positions. Coronal (top) and transverse view (bottom).

- Six spheres of different diameters between 10 mm and 37 mm
- Activity ratio of hot spheres to
- background: 4:1 Reconstruction parameters: 4 OSEM iterations and 3 SC iterations

Figure 3 (below)

The contrast recovery coefficient (CRC) was quantified for all 6 sphere sizes. Only the phantom placed in the axial center of the scanner was evaluated in this study. **Results:**

Qualitative Image Quality Assessment in Human Subjects

Without SC

With SC

transaxial distance [mm] scatter corrected

Without SC

Figure 1

- uEXPLORER installed at the EXPLORER molecular imaging center (EMIC) in Sacramento. This is the first clinically operating total-body PET scanner in the US.
- It has close to 100 B lines of response, which makes data corrections
- computationally expensive.

Data corrections in Total-Body PET

- Scattered events degrade contrast and quantitative accuracy [3]; correction for scattered photons always needed for human PET imaging
- Large number of detectors and widened acceptance angles in TB-PET \rightarrow dramatic increase in dataset sizes
- \rightarrow increased demands on image reconstruction and scatter correction (SC) This work: SC method based on computer simulations; implemented in the UC Davis in-house reconstruction framework
- Validation using phantom and human subject data

• Contrast recovery of up to 90% was achieved with SC • For comparison: without SC, CRC was < 75%

Figure 4

Left: Maximum intensity projections (MIPs) of a human subject without and with scatter correction

- 83 y/o patient with metastatic lung cancer
- 10 mCi [¹⁸F]FDG
- Scanned for 20 min @ 2 h post injection

Top, right: line profile through head and neck region. Scattered events in the region between arms and head have been corrected successfully.

Bottom right: zoomed in on abdominal region. The scatter corrected image shows vastly improved lesion conspicuity and increased contrast.

- Successful implementation of SC framework with quantitative and qualitative validation improved image quality compared to uncorrected images
- Higher lesion conspicuity, improved contrast and
- Serves as ground truth for optimizing performance of future SC methods
- Next steps: optimizing computational efficiency and improving quantitative accuracy

References

With SC

Conclusions & Outlook

[1] Badawi et al., 10.2967/jnumed.119.226498 [2] Spencer et al., 10.2967/jnumed.120.250597 [3] Zaidi et al., 10.1016/j.cpet.2007.10.003