Total-body perfusion imaging using ^{[11}C]-butanol

¹Elizabeth Li, ^{1,2}Benjamin A. Spencer, ²Yasser Abdelhafez, ³Javier Lopez, ²Guobao Wang, ^{1,2}Simon R. Cherry

¹Department of Biomedical Engineering, UC Davis, ²Department of Radiology, UC Davis, ³Department of Cardiovascular Medicine, UC Davis

Introduction: Tissue and organ perfusion is critically important in many pathologies. With total-body (TB-)PET we can quantitatively measure tissue and organ perfusion across the entire human body for the first time. Compared to commonly used perfusion tracers such as [¹⁵O]-water and [13N]-ammonia, [¹¹C]-butanol has superior first pass extraction fraction across a very wide range of perfusion values. Here, we present the initial methods, dosimetry, and kinetic analysis of an ongoing study assessing the use of [¹¹C]-butanol for dynamic perfusion imaging across the entire body with TB-PET.

Methods: Seven subjects (6 healthy volunteers and 1 patient with peripheral arterial disease) were recruited into this IRB-approved study and gave written informed consent. At each visit, the subjects received an intravenous bolus injection of ~300 MBq of [¹¹C]-butanol and underwent a 30-minute dynamic acquisition at rest. Whole-organ regions of interest (ROIs) were delineated in tissues using PMOD. Dosimetry estimates were performed using OLINDA 2.0 and the MIRD method. In order to estimate regional perfusion (K₁, ml/min/ml), the first 4 minutes were used to perform 1-tissue compartment modeling using the descending aorta as the image-derived input function and joint estimation of bolus delay. Parametric images were generated using the same approach voxel-by-voxel but with the Akaike Information Criterion used to perform model selection.

Results: The average total effective dose was ~3.65 μ Sv/MBq. As shown by the K₁ maximum intensity projection images (MIPs) in Figure 1, repeat scans demonstrated similar flow estimates. In the patient with PAD, local changes in perfusion were observed using the contralateral limb as a control.

Conclusions: Quantitative dynamic total-body perfusion studies with [¹¹C]-butanol have been performed for the first time in humans. Further subject and patient recruitment will provide an estimate of the reliability and sensitivity of [¹¹C]-butanol parametric imaging using high-sensitivity high-spatial resolution total-body PET.

Healt	Healthy subject 2				PAD Subject				
Day 0	Day	Day 7		Day 0		Day 8		7	
		The second second				Start Contraction		Carlo A	1.0 K_{i} (ml/min/ml) 0

Figure 1. Maximum intensity projection (MIP) of K_1 (perfusion) for the first five acquisitions of the study.