UC Davis Health team uses AI to predict risk of liver cancer

New algorithms developed by clinicians and data scientists could help personalize treatment

machine-learning-charts

A team of UC Davis Health clinicians and data scientists have developed a machine-learning model to better predict which patients are at greater risk of developing a common type of liver cancer, hepatocellular carcinoma (HCC).

The findings of their research — published in the journal Gastro Hep Advances — describe how predictive-learning can aid physicians in providing early HCC risk assessments for patients diagnosed with metabolic dysfunction-associated steatotic liver disease, or MASLD. The pilot technology may be able to give physicians critical information to screen patients more closely and thus offer more personalized care.

Read more about this news »


Toward Digital Twin Technology for Precision Pharmacology

Toward Digital Twin Technology

Abstract

The authors demonstrate the feasibility of technological innovation for personalized medicine in the context of drug-induced arrhythmia. The authors use atomistic-scale structural models to predict rates of drug interaction with ion channels and make predictions of their effects in digital twins of induced pluripotent stem cell-derived cardiac myocytes. The authors construct a simplified multilayer, 1-dimensional ring model with sufficient path length to enable the prediction of arrhythmogenic dispersion of repolarization. Finally, the authors validate the computational pipeline prediction of drug effects with data and quantify drug-induced propensity to repolarization abnormalities in cardiac tissue. The technology is high throughput, computationally efficient, and low cost toward personalized pharmacologic prediction.

Read the paper from here »

A multiscale predictive digital twin for neurocardiac modulation

Toward Digital Twin Technology

Abstract

Cardiac function is tightly regulated by the autonomic nervous system (ANS). Activation of the sympathetic nervous system increases cardiac output by increasing heart rate and stroke volume, while parasympathetic nerve stimulation instantly slows heart rate. Importantly, imbalance in autonomic control of the heart has been implicated in the development of arrhythmias and heart failure. Understanding of the mechanisms and effects of autonomic stimulation is a major challenge because synapses in different regions of the heart result in multiple changes to heart function. For example, nerve synapses on the sinoatrial node (SAN) impact pacemaking, while synapses on contractile cells alter contraction and arrhythmia vulnerability. Here, we present a multiscale neurocardiac modelling and simulator tool that predicts the effect of efferent stimulation of the sympathetic and parasympathetic branches of the ANS on the cardiac SAN and ventricular myocardium. The model includes a layered representation of the ANS and reproduces firing properties measured experimentally. Model parameters are derived from experiments and atomistic simulations. The model is a first prototype of a digital twin that is applied to make predictions across all system scales, from subcellular signalling to pacemaker frequency to tissue level responses. We predict conditions under which autonomic imbalance induces proarrhythmia and can be modified to prevent or inhibit arrhythmia. In summary, the multiscale model constitutes a predictive digital twin framework to test and guide high-throughput prediction of novel neuromodulatory therapy.

Read the paper from here »